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Preface

These notes summarize a series of lectures I gave as part of the

IAS/PCMI Mentoring Program for Women in Mathematics, held May

17-27, 1999 at the Institute for Advanced Study in Princeton, NJ

with funding from the National Science Foundation. The material

included is not original, but the exposition is new. The booklet [LG]

also contains an introduction to algebraic geometric coding theory,

but its intended audience is researchers specializing in either coding

theory or algebraic geometry and wanting to understand the connec-

tions between the two subjects. These notes, on the other hand, are

designed for a general mathematical audience. In fact, the lectures

were originally designed for undergraduates.

I have tried to retain the conversational tone of the lectures, and

I hope that the reader will find this monograph both accessible and

useful. Exercises are scattered throughout, and the reader is strongly

encouraged to work through them.

Of the sources listed in the bibliography, it should be pointed out

that [CLO2], [Ga], [H], [L], [MS], [NZM] and [S] were used most

intensively in preparing these notes. In particular:

• Theorem 1.11, which gives some important properties of cyclic

codes, can be found in [MS].

xi
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• The proof given for the Singleton Bound (Theorem 2.1) is from

[S].

• The proofs given for the Plotkin Bound (Theorem 2.3), the

Gilbert-Varshamov Bound (Theorem 2.4), and the asymptotic

Plotkin Bound (Theorem 2.7) are from [L].

• Exercise 3.6, about finding points on a hyperbola, is taken from

[NZM].

• The pictures and examples of singularities (as in Exercise 4.4)

are from [H].

• The proof of the classification of finite fields outlined in the

Exercises in Section B.3 is from [CLO2].

More generally, the reader is referred to [L], [MS], and [S] for

more information on coding theory, [H], [ST], and [CLO2] for more

information on algebraic geometry, and [Ga] for more background on

abstract algebra. In particular, any results included in these notes

without proofs are proven in these sources.

I would like to thank all of the people who contributed to the

development of this monograph. In particular, special thanks go to:

Chuu-Lian Terng and Karen Uhlenbeck, who organize the Mentoring

Program and invited me to speak there; Kirstie Venanzi and especially

Catherine Jordan, who provide the staff support for the program as

well as for IAS/PCMI; Christine Heitsch, who did a great job coordi-

nating problem sessions for my lectures; Graham Leuschke and Mark

Walker, who proofread the various drafts of these notes; and, most im-

portantly, the thirteen amazingly bright undergraduate women who

participated in the program — Heidi Basler, Lauren Baynes, Juliana

Belding, Mariana Campbell, Janae Caspar, Sarah Gruhn, Catherine

Holl, Theresa Kim, Sarah Moss, Katarzyna Potocka, Camilla Smith,

Michelle Wang, and Lauren Williams.

Judy L. Walker



Chapter 1

Introduction to Coding
Theory

1.1. Overview

Whenever data is transmitted across a channel, errors are likely to

occur. It is the goal of coding theory to find efficient ways of encod-

ing the data so that these errors can be detected, or even corrected.

Traditionally, the main tools used in coding theory have been those

of combinatorics and group theory. In 1977, V. D. Goppa defined

algebraic geometric codes [Go], thus allowing a wide range of tech-

niques from algebraic geometry to be applied. Goppa’s idea has had

a great impact on the field. Not long after Goppa’s original paper,

Tsfasman, Vladut and Zink [TVZ] used modular curves to construct

a sequence of codes with asymptotically better parameters than any

previously known codes. The goal of this course is to introduce you to

some of the basics of coding theory, algebraic geometry, and algebraic

geometric codes.

Before we write down a rigorous definition of a code, let’s look

at some examples. Probably the most commonly seen code in day-

to-day life is the International Standardized Book Number (ISBN)

Code. Every book is assigned an ISBN, and that ISBN is typically

displayed on the back cover of the book. For example, the ISBN for

The Theory of Error-Correcting Codes by MacWilliams and Sloane

1



2 1. Introduction to Coding Theory

([MS]) is 0-444-85193-3. The first nine digits 0-444-85193 contain

information about the book. The last “3”, however, is a check digit

which is chosen on the basis of the first nine. In general, the check

digit a10 for the ISBN a1−a2a3a4−a5a6a7a8a9 is chosen by computing

a10
′ := (a1 + 2a2 + · · · + 9a9). If a10

′ ≡ i (mod 11) for some i with

0 ≤ i ≤ 9, we set a10 = i. If a10
′ ≡ 10 (mod 11), we set a10 to be the

symbol “X”. The point is that every book is assigned an ISBN using

the same system for choosing a check digit, and so, for example, if

you are working in the Library of Congress cataloging new books and

you make a mistake when typing in this number, the computer can

be programmed to catch your error.

The ISBN Code is a very simple code. It is not hard to see that it

detects all single-digit errors (a mistake is made in one position) and

all transposition errors (the numbers in two positions are flipped). It

cannot correct any single-digit or transposition errors, but this is not

a huge liability, since one can easily just type in the correct ISBN

(re-send the message) if a mistake of this type is made. Further, the

ISBN code is efficient, since only one non-information symbol needs

to be used for every nine-symbol piece of data.

The so-called Repetition Codes provide an entire class of simple

codes. Suppose, for example, every possible piece of data has been

assigned a four bit string (a string of zeros and ones of length four),

and suppose that instead of simply transmitting the data, you trans-

mit each piece of data three times. For instance, the data string 1011

would be transmitted as 1011 1011 1011. If one error occurs, then

that error would be contained in one of the three blocks. Thus the

other two blocks would still agree, and we would be able to detect and

correct the error. If we wanted to be able to correct two errors, we

would simply transmit each piece of data five times, and in general,

to correct t errors, we would transmit the data 2t + 1 times.

The Repetition Codes have an advantage over the ISBN Code in

that they can actually correct errors rather than solely detect them.

However, they are very inefficient, since if we want to be able to

correct just one error, we need to transmit a total of three symbols

for every information symbol.

We are now in a position to make some definitions.
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Definition 1.1. A code C over an alphabet A is simply a subset of

An := A× · · · ×A (n copies).

In this course, A will always be a finite field, but you should

be aware that much work has been done recently with codes over

finite rings; see Project C.6. Appendix B discusses finite fields, but

for now, you may just think of the binary field F2 := {0, 1}, where

addition and multiplication are done modulo 2. More generally, for

any prime p, we have a field Fp := {0, 1, . . . , p− 1} with addition and

multiplication modulo p.

Definition 1.2. Elements of a code are called codewords, and the

length of the code is n, where C ⊆ An. If A is a field, C is called

a linear code if it is a vector subspace of An, and in this case the

dimension k of C is defined to be the dimension of C as a vector

space over A. Notice that if A = Fq is the finite field with q elements,

and C is a linear code over A, then k = logq(#C), where #C is the

number of codewords in C. Together with the minimum distance dmin

of C which we define below, n and k (or n and #C in the nonlinear

case) are called the parameters of C.

If C is a linear code of length n and dimension k over A, we can

find k basis elements for C, each of which will be a vector of length

n. We form a k × n matrix by simply taking the basis elements as

the rows, and this matrix is called a generator matrix for C.

Notice that if G is a generator matrix for C, then C is exactly

the set {uG |u ∈ Ak}. For example, the matrix
(

1 1 0

0 1 1

)

is a generator matrix for a linear code of length 3 and dimension 2.

Definition 1.3. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ An, we

define the Hamming distance from x to y to be

d(x,y) := #{i |xi 6= yi}.

For x ∈ An, we also define the Hamming weight of x to be wt(x) =

d(x, (0, 0, . . . , 0)).
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Exercise 1.4. Show that the Hamming distance in fact defines a

metric on An. In other words, show that for all x,y, z ∈ An, we have:

a) d(x,y) ≥ 0, with d(x,y) = 0 if and only if x = y,

b) d(x,y) = d(y,x), and

c) d(x,y) + d(y, z) ≥ d(x, z).

Definition 1.5. The minimum distance of C is

dmin := dmin(C) = min{d(x,y) |x,y ∈ C and x 6= y}

If the meaning is clear from context, we will often drop the sub-

script and simply write d for the minimum distance of a code.

Exercise 1.6. Show that if C is a linear code then the minimum

distance of C is min{wt(x) |x ∈ C and x 6= (0, 0, . . . , 0)}. In other

words, show that for linear codes, the minimum distance is the same

as the minimum weight.

Let’s now return to our examples. The ISBN Code is a code

of length 10 over F11 (where the symbol X stands for the element

10 ∈ F11). It is a nonlinear code since the X can never appear in

the first nine positions of the code. It has 109 codewords, and the

minimum distance is 2. Our Repetition Code is a linear code over F2

of length 4r, where r is the number of times we choose to repeat each

piece of data. The dimension is 4, and the minimum distance is r.

Why are the dimension (or number of codewords) and minimum

distance of a code important? Suppose C is a linear code over an

alphabet A which has length n, dimension k, and minimum distance

d. We may think of each codeword as having k information symbols

and n − k checks. Thus, we want k large with respect to n so that

we are not transmitting a lot of extraneous symbols. This makes our

code efficient. On the other hand, the value of d determines how many

errors our code can correct. To see this, for x ∈ An and a positive

integer t, define Bt(x) to be the ball of radius t centered at x. In

other words, Bt(x) is the set of all vectors in An which are Hamming

distance at most t away from x. Since C has minimum distance d, two

balls of radius b d−1
2 c centered at distinct codewords cannot intersect.

Thus, if at most b d−1
2 c errors are made in transmission, the received
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word will lie in a unique ball of radius b d−1
2 c, and that ball will be

centered at the correct codeword. In other words, a code of minimum

distance d can correct up to b d−1
2 c errors, so we want d large with

respect to n as well.

The question now, of course, is: If we say that a linear code is

good if both k and d are large with respect to n, then just how good

can a code be?

As a partial answer to this question, let’s turn now to the Reed-

Solomon codes. Let Fq be the field with q elements. For any non-

negative integer r, define Lr := {f ∈ Fq[x] | deg(f) ≤ r} ∪ {0}. Note

that Lr is a vector space over the field Fq.

Exercise 1.7. Show that dimFq
(Lr) = r + 1 by finding an explicit

basis.

Definition 1.8. Label the q − 1 nonzero elements of Fq as α1, . . . ,

αq−1 and pick k ∈ Z with 1 ≤ k ≤ q − 1. Then the Reed-Solomon

Code RS(k, q) is defined to be

RS(k, q) := {(f(α1), . . . , f(αq−1)) | f ∈ Lk−1}.

Notice that RS(k, q) is a subset of Fq−1
q := Fq × · · · × Fq (q − 1

copies), so RS(k, q) is a code over the alphabet Fq. Further, since

the map ε : Lk → Fq−1
q given by ε(f) = (f(α1), . . . , f(αq−1)) is a

linear transformation (see Definition A.21) and RS(k, q) is its image,

RS(k, q) is a linear code. What are the parameters of RS(k, q)?

Certainly the length is n = q − 1 and the dimension is at most

dim Lk−1 = k. If ε(f) = ε(g), then f−g has at least q−1 roots, so by

Exercise B.10, f − g has degree at least q− 1. But f − g ∈ Lk, which

implies f = g. Thus C has dimension exactly k. To find the min-

imum distance, we’ll use Exercise 1.6 and find the minimum weight

instead. So, suppose f ∈ Lk−1 and wt(ε(f)) = d = dmin. Then f

has at least n − d zeros, so it has degree at least n − d (again using

Exercise B.10). Since f ∈ Lk−1, this means that n − d ≤ k − 1, or,

equivalently, d ≥ n− k + 1.

In Chapter 2.1, we will show that, in fact, we have d = n− k +1.
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1.2. Cyclic Codes

Before we move on, we should spend a little time on cyclic codes. This

class of codes is very important. In particular, some of the codes given

as possible project topics in Appendix C are cyclic codes.

Definition 1.9. A linear code C is called a cyclic code if it has the

following property: whenever (c0, c1, . . . , cn−1) ∈ C, it is also true

that (c1, c2, . . . , cn−1, c0) ∈ C.

More generally, the automorphism group Aut(C) of a code C is

the set of permutations σ ∈ Sn such that σ(c) ∈ C for all c ∈ C,

where σ(c0, . . . , cn−1) = (cσ(0), . . . , cσ(n−1)). In other words, the code

C is cyclic if and only if the permutation σ = (0, 1, 2, . . . , n− 1) is in

Aut(C).

There is a very nice algebraic way of looking at cyclic codes which

we will now investigate. Let C be a cyclic code over the field Fq.

As in Appendix A, we set Rn := Fq[x]/ 〈xn − 1〉. We can think of

elements of Rn as polynomials of degree at most n−1 over Fq, where

multiplication is done as usual except that xn = 1, xn+1 = x, and so

on (see Exercise A.17). Thus, we can identify C with

IC := {c(x) :=c0 + c1x + · · ·+ cn−1x
n−1 ∈ Rn |

c := (c0, c1, . . . , cn−1) ∈ C}.
(This is the reason for indexing the coordinates of a cyclic code be-

ginning with 0 rather than 1.)

Exercise 1.10. Let C be a cyclic code. Show that IC is an ideal of

Rn.

Exercise A.13 shows that every ideal of Fq[x] is principal, gen-

erated by the unique monic polynomial of smallest degree inside the

ideal. The next Theorem first shows that the same is true for ideals

of Rn, then gives some important properties of that polynomial.

Theorem 1.11. Let I be an ideal of Rn and let g(x) ∈ I be a monic

polynomial of minimal degree. Let ` = deg(g(x)). Then

a) g(x) is the only monic polynomial of degree ` in I.

b) g(x) generates I as an ideal of Rn.
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c) g(x) divides xn − 1 as elements of Fq[x].

d) If I = IC for some cyclic code C, then dim C = n− `.

Proof. Suppose first that f(x) ∈ I is monic of degree `. If f(x) 6=
g(x), then f(x)− g(x) is a polynomial of degree strictly less than ` in

I. Multiplying by an appropriate scalar yields a monic polynomial,

which contradicts the minimality of `, proving (a).

To prove (b), let c(x) be any element of I. Lifting to Fq[x], we

can use the division algorithm to write c(x) = f(x)g(x) + r(x) for

polynomials f(x) and r(x) with r(x) either 0 or of degree strictly less

than `. Since c(x), g(x) and r(x) all have degree less than n, it must

also be true that f(x) has degree less than n, so this equation makes

sense in Rn as well. But then we have r(x) = c(x) − f(x)g(x) ∈ I,

which means r(x) = 0 by minimality of `.

For (c), use the division algorithm in Fq[x] to write xn − 1 =

q(x)g(x) + r(x) with r(x) either 0 or having degree strictly less than

`. Passing to Rn, we have r(x) = −q(x)g(x) ∈ I, which implies

r(x) = 0 in Rn by minimality of `. Thus r(x) = 0 in Fq[x] as well

since otherwise xn − 1 divides r(x), which makes r(x) have degree at

least n > `.

Finally, let c ∈ C be any codeword. Then c(x) ∈ 〈g(x)〉 ⊂ Rn,

so there is some f(x) ∈ Rn with c(x) = f(x)g(x). In Fq[x], then, we

have c(x) = f(x)g(x)+e(x)(xn−1) for some polynomial e(x) ∈ Fq[x].

Using (c), we have c(x) = g(x)(f(x) + e(x)q(x)), where g(x)q(x) =

xn − 1. Setting h(x) = f(x) + e(x)q(x), we have c(x) = g(x)h(x),

where deg(h(x)) ≤ n−`−1. Thus the codewords of C, when thought

of as elements of Fq[x], are precisely the polynomials of the form

g(x)h(x), where h(x) ∈ Ln−`−1, so dim C = dim Ln−`−1 = n − `.

This proves (d).

Because of the importance of this generator of the ideal IC , we

give it a special name.

Definition 1.12. If C is a cyclic code, we define the generator poly-

nomial for C to be the unique monic polynomial g(x) ∈ IC of minimal

degree.





Chapter 2

Bounds on Codes

2.1. Bounds

We have already seen that a linear code C of length n, dimension k

and minimum distance d is efficient if k is large (with respect to n)

and it corrects many errors if d is large (with respect to n). We are

thus prompted to ask the question: Given n and k, how large can d

be? Or, equivalently: Given n and d, how large can k be? In this

chapter, we will consider three partial answers to these questions.

Theorem 2.1. (Singleton Bound) Let C be a linear code of length

n, dimension k, and minimum distance d over Fq. Then d ≤ n−k+1.

This shows that the minimum distance of the Reed-Solomon code

RS(k, q) is exactly n − k + 1. Any code having parameters which

meet the Singleton Bound is called an MDS code. (MDS stands for

Maximum Distance Separable.)

There are several proofs one can give for this theorem. We will

give one which relies only on linear algebra. For others, see [MS].

Proof of Theorem 2.1. Begin by defining a subset W ⊆ Fn
q by

W := {a = (a1, . . . , an) ∈ Fn
q | ad = ad+1 = · · · = an = 0}.

For any a ∈ W , we have wt(a) ≤ d − 1, so W ∩ C = {0}. Thus

dim(W + C) = dim W + dim C, where W + C is the subspace of Fn
q

9



10 2. Bounds on Codes

defined by

W + C := {w + c |w ∈ W and c ∈ C}.

But dim W = d − 1 and dim C = k, so this says that d − 1 + k ≤ n,

or d ≤ n− k + 1.

Theorem 2.1 shows that if we consider codes of length q − 1

and dimension k, there are no codes better than the Reed-Solomon

codes. However, the Reed-Solomon codes are a very restrictive class

of codes because the length is so small with respect to the alphabet

size. (Reed-Solomon codes don’t even make sense over F2!) Further,

the Main Conjecture on MDS Codes ([MS]) essentially asserts that

all MDS codes are short. In practice, we want to work with codes

which are long with respect to the alphabet size. Thus we look for

codes which are long, efficient, and correct many errors, but which

perhaps are not optimal with respect to the Singleton Bound.

Although the proof given above works only for linear codes, the

Singleton Bound is in fact true for nonlinear codes as well. The

statement in this more general case is: If C is a code of length n with

M codewords and minimum distance d over an alphabet of size q,

then M ≤ qn−d+1.

The following definition will help us state our bounds more clearly.

Definition 2.2. Let q be a prime power and let n, d be positive

integers with d ≤ n. Then the quantity Aq(n, d) is defined as the

maximum value of M such that there is a code over Fq of length n

with M codewords and minimum distance d.

By the Singleton Bound, we immediately have that Aq(n, d) ≤
qn−d+1, but the Main Conjecture claims that this bound is not sharp

for long codes. We now give both an upper bound which works for

long codes and a lower bound on Aq(n, d).

Theorem 2.3. (Plotkin Bound) Set θ = 1−1/q. Then Aq(n, d) = 0

if d < θn and

Aq(n, d) ≤ d

d− θn
if d > θn.
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Proof. Let C be a code of length n with M codewords and minimum

distance d over the field Fq. Set S =
∑

d(x,y), where the sum runs

over all ordered pairs of distinct codewords in C. Since the distance

between any two codewords is at least d, and there are M(M − 1)

possible ordered pairs of distinct codewords, we immediately have

S ≥ M(M − 1)d.

Now we’ll derive an upper bound on S. Form an M × n matrix

where the rows are the codewords of C. Consider any one column

of this matrix, and let mα be the number of times the element α of

Fq occurs in this column. (Note that
∑

mα = M .) Then M − mα

codewords have some other entry in that column and there are n

columns total, so assuming this column is the one in which codewords

differ the most, we have

S ≤ n
∑

α∈Fq

mα(M −mα)

= nM
∑

α∈Fq

mα − n
∑

α∈Fq

m2
α

= n(M2 −
∑

α∈Fq

m2
α).

Now recall the Cauchy-Schwarz inequality: If a = (a1, . . . , ar)

and b = (b1, . . . , br) are vectors of length r, set a · b :=
∑

aibi, and

||a|| := (
∑

a2
i )

1/2. Then ||a ·b|| ≤ ||a|| ||b||. So setting a = (mα)α∈Fq

and b = (1, . . . , 1), we get

∑

α∈Fq

mα ≤


 ∑

α∈Fq

m2
α




1

2

√
q.

Squaring both sides and dividing through by q yields

1

q


 ∑

α∈Fq

mα




2

≤
∑

α∈Fq

m2
α.

Substituting, we get S ≤ n(M 2−M2/q) = nM2θ, where θ = 1−1/q.

Putting this all together, we have

dM(M − 1) ≤ S ≤ nM2θ.



12 2. Bounds on Codes

This can be rewritten as M ≤ d/(d−θn), giving the statement of the

theorem.

Before we can state our lower bound on Aq(n, d), we must review

some notation. Recall that for any x ∈ Fn
q and any positive integer

r, Br(x) is the ball of radius r centered at x. Note that #Br(x) is

independent of x and depends only on r, q, and n. Thus we may

let Vq(n, r) denote the number of elements in Br(x) for any x ∈ Fn
q .

For any y ∈ Br(x), there are (q − 1) possible values for each of the r

positions in which x and y differ, so we see that

Vq(n, r) := #Br(x) =
r∑

i=0

(
n

i

)
(q − 1)i.

We’re now ready to state our lower bound:

Theorem 2.4. (Gilbert-Varshamov Bound) The quantity Aq(n, d)

satisfies

Aq(n, d) ≥ qn/Vq(n, d− 1).

Proof. Let C be a (possibly nonlinear) code of length n over Fq with

minimum distance d and M = Aq(n, d) codewords. Let y ∈ Fn
q be

arbitrary. If y doesn’t lie in Bd−1(x) for any x ∈ C, then d(x,y) ≥ d

for every x ∈ C. Thus C ∪ {y} is a code of length n with minimum

distance d and M + 1 > Aq(n, d) codewords, which is impossible.

Thus y ∈ Bd−1(x) for some x ∈ C. Therefore the union over all M

codewords x ∈ C of Bd−1(x) must be all of Fn
q , so we have

qn = #Fn
q ≤ M · Vq(n, d− 1).

Rewriting this inequality gives the desired bound.

2.2. Asymptotic Bounds

Since we are looking for codes which have large dimension (or many

codewords in the nonlinear case) and large minimum distance with

respect to n, it makes sense to normalize these parameters by dividing

through by n. In this spirit, we have:

Definition 2.5. Let C be a code over Fq of length n with qk code-

words and minimum distance d. (Note that if C is not linear then k
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might not be an integer.) The information rate of C is R := k/n and

the relative minimum distance of C is δ := d/n.

Of course, both R and δ are between 0 and 1, and C is a good

code if both R and δ are close to 1.

Our question of the last section now becomes: Given δ, how large

can R be? Building on our previous results, we make the following

definition:

Definition 2.6. Let q be a prime power and δ ∈ R with 0 ≤ δ ≤ 1.

Then

αq(δ) := lim sup
n→∞

1

n
logq Aq(n, δn)

After some thought, one sees that αq(δ) is the largest R such that

there is a sequence of codes over Fq with relative minimum distance

converging to δ and information rate converging to R. We will now

develop asymptotic versions of the Plotkin and Gilbert-Varshamov

bounds, thus giving bounds on the value of αq(δ).

Theorem 2.7. (Asymptotic Plotkin Bound) With θ = 1 − 1/q, we

have

αq(δ) ≤ 1− δ/θ, if 0 ≤ δ ≤ θ

αq(δ) = 0, if θ ≤ δ ≤ 1

Proof. Let C be a code of length n with M codewords and minimum

distance d over Fq. We can “shorten” C by considering the subset

of C which ends in a certain symbol and then deleting that symbol.

This procedure certainly preserves minimum distance, so if we do it r

times, we are left with a code C ′ with length n−r, minimum distance

d, and at least M/qr codewords.

Set n′ := bd−1
θ c and shorten C a total of r = n − n′ times to

obtain a code of length n′ with M ′ ≥ M/qn−n′

codewords. The

original Plotkin Bound of Theorem 2.3 gives us

M

qn−n′
≤ M ′ ≤ d

d− θn′
≤ d,
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which immediately gives M ≤ dqn−n′

. Plugging into the definition

for αq(δ), we have

αq(δ) ≤ lim sup
n→∞

1

n
logq(δnqn−n′

)

= lim sup
n→∞

(
logq δ

n
+

logq n

n
+ 1− n′

n

)

= 1− lim
n→∞

n′

n
= 1− δ/θ.

The equation

lim
n→∞

n′/n = lim
n→∞

(
d− 1

θ

)
/n = δ/θ.

gives the last step.

In order to prove an asymptotic version of the Gilbert-Varshamov

Bound, we will need a definition and a lemma. As usual, set θ =

1− 1/q, and define a function Hq(x) on the interval 0 ≤ x ≤ θ by

Hq(x) :=

{
0, x = 0

x logq(q − 1)− x logq x− (1− x) logq(1− x), 0 < x ≤ θ

The function Hq is called the Hilbert entropy function.

Recall that Vq(n, r) is the number of vectors in any ball of radius

r in Fn
q .

Lemma 2.8. For any λ with 0 ≤ λ ≤ θ, we have

lim
n→∞

1

n
logq Vq(n, bλnc) = Hq(λ).

We omit the proof of this lemma. However, it is not difficult and

relies on a combinatorial result called Stirling’s formula.

Theorem 2.9. (Asymptotic Gilbert-Varshamov Bound) For any δ

with 0 ≤ δ ≤ θ, we have

αq(δ) ≥ 1−Hq(δ).
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Proof. Simply plug into the definition of αq(δ):

αq(δ) = lim sup
n→∞

1

n
logq A(n, δn)

≥ lim sup
n→∞

1

n
logq(q

n/Vq(n, d− 1))

= lim
n→∞

1− 1

n
logq Vq(n, δn) = 1−Hq(δ),

which is what we needed to show.

Therefore, the possible values for αq(δ) lie in the region above

the Gilbert-Varshamov curve R = 1 − Hq(δ) and below the Plotkin

line R = 1− δ/θ in the R-δ plane, as indicated by the shaded region

in the following picture:

Plotkin bound

GV bound

1 - 1� q

1

We close this chapter with a bit of history to put things into

perspective. There are several known upper bounds on αq(δ). The

Plotkin bound is not the best one, but we chose to include it because

it gives a flavor for the area and because it is simple to prove. On

the other hand, the seemingly obvious Gilbert-Varshamov bound was

the best known lower bound on αq(δ) for a full 30 years following

its original discovery in 1952. The existence of a sequence of codes

having parameters asymptotically better than those guaranteed by

the Gilbert-Varshamov bound was first proven in 1982 by Tsfasman,

Vladut, and Zink. Their sequence used algebraic geometry codes,

which were introduced by V. D. Goppa in 1977. Our goal for the

rest of the course is to develop some algebraic geometry so that we

can understand Goppa’s construction and see how Tsfasman, Vladut,

and Zink came up with their ground-breaking sequence of codes.





Chapter 3

Algebraic Curves

3.1. Algebraically Closed Fields

We begin this section with a definition:

Definition 3.1. A field k is algebraically closed if every polynomial

in k[x] has at least one root.

For example, F2 is not algebraically closed since x2 + x + 1 is

irreducible over F2. Similarly, Q and R are not algebraically closed

since x2+1 is irreducible over these fields. However, C is algebraically

closed; this is the Fundamental Theorem of Algebra.

Exercise 3.2. Let F be a finite field. Prove that F cannot be alge-

braically closed. Hint: Mimic Euclid’s proof that there are infinitely

many primes.

Given a field k, it is often convenient to look at an algebraically

closed field which contains k.

Definition 3.3. Let k be a field. An algebraic closure of k is a field

K with k ⊆ K satisfying

• K is algebraically closed, and

• If L is a field such that k ⊆ L ⊆ K and L is algebraically

closed, then L = K.

17



18 3. Algebraic Curves

In other words, an algebraic closure of k is a “smallest” alge-

braically closed field containing k. There is the following theorem:

Theorem 3.4. Every field has an unique algebraic closure, up to iso-

morphism.

Because of this theorem, we can talk of the algebraic closure of

the field k, and we write k̄ for this field. For example, R̄ = C. On

the other hand, it is known that π, for example, is not the root of

any polynomial over Q, so Q̄ ⊂ C but Q̄ 6= C. Also, F̄4 = F̄2, and in

general, F̄pn = F̄p.

The following theorem gives a crucial property of algebraically

closed fields.

Theorem 3.5. Let k be an algebraically closed field and let f(x) ∈
k[x] be a polynomial of degree n. Then there exists u ∈ k× := k \ {0}
and α1, . . . αn ∈ k (not necessarily distinct) such that f(x) = u(x −
α1) . . . (x− αn). In particular, counting multiplicity, f has exactly n

roots in k.

Proof. Induct on n. If n = 0, then f is constant, so f ∈ k×.

Assume now that every polynomial of degree n can be written in the

form of the theorem, and let f(x) ∈ k[x] have degree n + 1. Then

since k is algebraically closed, f has a root α. Now by Exercise B.10,

f(x) = (x−α)g(x) for some g(x) ∈ k[x] of degree n. By the induction

hypothesis, we can write g(x) in the desired form, thus giving an

appropriate expression for f(x).

3.2. Curves and the Projective Plane

Given a polynomial with integer or rational coefficients (a Diophan-

tine Equation), it is a fundamental problem in number theory to find

solutions of this equation in either the integers, the positive inte-

gers, or the rationals. For example, Fermat’s Last Theorem (recently

proven by Andrew Wiles) states that there is no solution (x, y, z) in

positive integers to the equation xn + yn = zn when n ≥ 3. The

problem of finding positive integers a, b, c which could be the sides of

a right triangle (Pythagorean triples) could be stated as finding posi-

tive integer solutions to the equation a2 + b2 = c2. It is often useful
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to approach these problems by thinking of the equations geometri-

cally and/or modulo some prime p. If f(x, y) = 0 is a polynomial

in two variables, then the equation f(x, y) = 0 defines a curve Cf in

the plane. This leads us to the study of algebraic curves and alge-

braic curves over finite fields. The set of solutions to the equation

f(x, y) = 0 in the field k is denoted Cf (k).

Exercise 3.6. The purpose of this problem is to find all rational

solutions to the equation x2 − 2y2 = 1. We will do this graphically,

by considering the hyperbola Cf in R2 defined by the polynomial

f(x, y) = x2 − 2y2 − 1.

a) Show that (1, 0) is a point on the hyperbola. Are there any

other points with y-coordinate 0?

b) Let L be a line with rational slope t which passes through the

point (1, 0). Write down an equation for the line L in the form

y = p(x).

c) Show that the equation f(x, p(x)) has exactly 2 solutions (x, y),

one of which is (1, 0), and the other of which is a rational solu-

tion to the equation x2 − 2y2 = 1.

d) Write down polynomial equations x = x(t), y = y(t) which

define infinitely many rational solutions to the equation x2 −
2y2 = 1.

e) Show that your equations actually give all but two rational

solutions to the equation. Which two are missing?

If we want simultaneous solutions to two polynomial equations

in two variables, then we’re looking at the intersection of two curves.

Let’s examine a specific case. Take f(x, y) = y−x2 and g(x, y) = y−c

for various choices of c. If we take k = R, we can graph these two

equations and look for points of intersection. We see that sometimes

we have exactly 2 points of intersection. This occurs, for example, if

c = 4. If c = 0, we get only one point, and if c < 0, we don’t get

any at all! However, if we point out that when c = 0, the curves are

actually tangent at the point of intersection, we can count that as a

single point of multiplicity 2. Further, if we extend to k̄ = C, we see

that we get exactly 2 points of intersection for c < 0 as well. More

generally, if we take lines of the form y = mx+ b, we will get either 2,
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1, or 0 points of intersection over R and the situation is as before: If

there is one point of intersection, then the line is actually a tangent

line. If there are no points of intersection, then we find two when we

look in C. It’s beginning to look as if Cf and Cg will always intersect

in exactly two points, at least if we’re willing to count multiplicity

and extend to the algebraic closure.

But now replace our g with the vertical line defined by g(x, y) =

x−c. Regardless of what value of c we choose, there is only one point

of intersection and the line is not tangent at that point. Extending

to C doesn’t help things at all. But somehow we feel that if we count

correctly, there should be two points of intersection between any line

and the curve Cf , where f(x, y) = y − x2.

Heuristically, the idea is as follows: The curves x = c and y = x2

intersect once “at infinity” as well. In general, a curve Cf where

f(x, y) ∈ k[x, y] is called an affine curve. We want to look at the

projective closure Ĉf of Cf , which amounts to “adding points at in-

finity”. To do this, start by constructing the polynomial F (X,Y, Z) =

Zdf(X/Z, Y/Z) ∈ k[X,Y, Z], where d = deg(f).

For example, the curve defined by the polynomial equation y2 =

x3 + x + 1 is Cf , where f(x, y) = y2−x3−x− 1. Then F (X,Y, Z) =

Z3((Y/Z)2 − (X/Z)3 − (X/Z)− 1) = Y 2Z −X3 −XZ2 −Z3. Notice

that every monomial appearing in F has degree exactly 3 = deg(f),

and that the task of constructing F amounted to capitalizing and

adding enough Z’s so that every term would have degree 3. The

polynomial F is called the homogenization of f .

We now ask: How do the solutions (x0, y0) to f(x, y) = 0 and the

solutions (X0, Y0, Z0) to F (X,Y, Z) = 0 compare? Three observations

are immediate:

• f(x0, y0) = 0 ⇐⇒ F (x0, y0, 1) = 0

• For any α ∈ k×, we have

F (αX,αY, αZ) = (αZ)df(αX/αZ, αY/αZ)

= αdF (X,Y, Z),

so F (X0, Y0, Z0) = 0 ⇐⇒ F (αX0, αY0, αZ0) = 0 for all α ∈
k×.
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• Since F is homogeneous, F (0, 0, 0) = 0.

Because of the third observation, we want to ignore the solution

(0, 0, 0) of F = 0. Because of the second, we want to identify the solu-

tions (X0, Y0, Z0) and (αX0, αY0, αZ0). This leads us to the following

definition:

Definition 3.7. Let k be a field. The projective plane P2(k) is de-

fined as

P2(k) := (k3 \ {(0, 0, 0)})/∼,

where (X0, Y0, Z0) ∼ (X1, Y1, Z1) if and only if there is some α ∈ k×

with X1 = αX0, Y1 = αY0, and Z1 = αZ0.

To remind ourselves that points of P2(k) are equivalence classes,

we write (X0 : Y0 : Z0) for the equivalence class of (X0, Y0, Z0) in

P2(k).

Definition 3.8. Let k be a field, f(x, y) ∈ k[x, y] a polynomial of

degree d, and Cf the curve associated to f . The projective closure of

the curve Cf is Ĉf := {(X0 : Y0 : Z0) ∈ P2 |F (X0, Y0, Z0) = 0}, where

F (X,Y, Z) := Zdf(X/Z, Y/Z) ∈ k[X,Y, Z] is the homogenization of

f .

By multiplying through by a unit, we can assume the right-most

nonzero coordinate of a point of P2(k) is 1, so we have

P2(k) = {(X0 : Y0 : 1) |X0, Y0 ∈ k} ∪
{(X0 : 1 : 0) |X0 ∈ k} ∪
{(1 : 0 : 0)}.

Any point (X0 : Y0 : Z0) with Z0 = 0 is called a point at infinity.

Every other point is called affine.

Exercise 3.9. Suppose f(x, y) ∈ k[x, y] and F (X,Y, Z) is the ho-

mogenization of f . Show that f(x, y) = F (x, y, 1).

Exercise 3.10. Consider the projective plane P2(R).

a) Prove that in P2(R), there is a one-to-one correspondence be-

tween points at infinity and lines through the origin in R2.

b) Given a line in R2 which does not pass through the origin, which

point at infinity lies on the projective closure of that line?
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Let’s return now to our example and see what happens if we con-

sider the intersection in P2. We have f(x, y) = y−x2, so F (X,Y, Z) =

Y Z−X2. Also, g(x, y) = x− c, so G(X,Y, Z) = X− cZ. To find our

affine points of intersection, we set Z = 1 and find that Y −X2 = 0

and X = c. Thus Y = c2 and our only affine point of intersection is

(c : c2 : 1). Now look at points at infinity: F (X,Y, 0) = −X2, which

is 0 if and only if X = 0, so we get the point (0 : 1 : 0) on Ĉf . Since

G(X,Y, 0) = X, this point is certainly on Ĉg as well. Therefore, we

see that if we look in P2, we get exactly two points of intersection of

Ĉf and Ĉg.

In fact, there is the following theorem:

Theorem 3.11. (Bezout’s Theorem) If f, g ∈ k[x, y] are polynomi-

als of degrees d and e respectively, then Cf and Cg intersect in at

most de points. Further, Ĉf and Ĉg intersect in exactly de points of

P2(k̄), when points are counted with multiplicity.

For example, Bezout’s theorem says that any two curves de-

fined by quadratic polynomials intersect in exactly four points when

counted appropriately. If we set f1(x, y) = y − x2 and f2(x, y) =

(y − 2)2 − (x + 2), then we can graph the curves Cf1
and Cf2

to find

exactly four points of intersection in R2. However, if we replace f2

with f3 = y2 − (x + 2), then Cf1
and Cf3

intersect in only two points

in R2. Allowing complex coordinates, we find the other two points

of intersection. On the other hand, even in complex coordinates, the

curves Cf1
and Cf4

, where f4(x, y) = y +x2−2, intersect at only two

points. If we homogenize, however, we see that Ĉf1
and Ĉf4

intersect

at the point (0 : 1 : 0). By Bezout’s Theorem, the curves must inter-

sect with multiplicity 2 there. In other words, the curves are tangent

at the point (0 : 1 : 0).

Exercise 3.12. Let f(x, y) = x3 + x2y − 3xy2 − 3y3 + 2x2 − x + 5.

Find all (complex) points at infinity on Ĉf , the projective closure of

Cf .

Exercise 3.13. Find C(F7) where C is the projective closure of the

curve defined by the equation y2 = x3 + x + 1.



Chapter 4

Nonsingularity and the
Genus

4.1. Nonsingularity

For coding theory, one only wants to work with “nice” curves. Since

we’ve already decided to restrict ourselves to plane curves, the only

other restriction we will need is that our curves will be nonsingular,

a notion which we will define below. As nonsingularity and differen-

tiability are closely related, we must first figure out what it means to

differentiate over an arbitrary field k.

Let k be a field and let f(x, y) ∈ k[x, y] be a polynomial. If

k = R or C, we understand completely what the partial derivative

fx of f with respect to x is. If k is a field of characteristic p > 0

(see Definition B.1), the usual limit definition no longer makes sense.

However, for f(x, y) ∈ Fq[x, y], we can define the formal partial de-

rivative fx(x, y) ∈ k[x, y] of f with respect to x by simply declaring

that the familiar rules for differentiation are in fact the definition.

For example, if f(x, y) = x2 + y3 + xy, then fx(x, y) = 2x + y and

fy(x, y) = 3y2 + x over any field k. In particular, if k = F2, then

fx(x, y) = y and fy(x, y) = y2 + x. On the other hand, if k = F3,

then fx(x, y) = 2x + y and fy(x, y) = x.

23
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Definition 4.1. Let k be a field and f(x, y) ∈ k[x, y]. A singular

point of Cf is a point (x0, y0) ∈ k̄ × k̄ such that f(x0, y0) = 0 and

fx(x0, y0) = 0 and fy(x0, y0) = 0. The curve Cf is nonsingular if it

has no singular points. If F (X,Y, Z) is the homogenization of f(x, y),

then (X0 : Y0 : Z0) ∈ P2(k̄) is a singular point of Ĉf if the point is on

the curve and all partial derivatives vanish there, i.e., if

F (X0, Y0, Z0) = FX(X0, Y0, Z0)

= FY (X0, Y0, Z0)

= FZ(X0, Y0, Z0)

= 0.

The curve Ĉf is nonsingular if it has no singular points.

Exercise 4.2. Let f(x, y) ∈ R[x, y] and suppose (0, 0) is a nonsin-

gular point on Cf . If fy(0, 0) 6= 0, show that the line y = mx,

where m = fx(0, 0)/fy(0, 0), is the tangent line to Cf at (0, 0). If

fy(0, 0) = 0, show that the line x = 0 is the tangent line to Cf at

(0, 0).

In general, if P is a nonsingular point on Cf , then the line through

P with slope fx(P )/fy(P ) is the tangent line to Cf at P . If fy(P ) = 0,

the tangent line is the vertical line through P . Exercise 4.2 proves

this (after a change of coordinates).

Exercise 4.3. If Definition 4.1 is to make sense, one would expect

that if Cf is nonsingular then the only possible singular points of Ĉf

are at infinity. This is true, and follows from the definition of the

homogenization of f and the chain rule for partial derivatives. Check

it for yourself.

Intuitively, a singular point is a point where the curve doesn’t

have a well-defined tangent line, or where it intersects itself. Here are

four examples of curves (over R) with singularities:
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TACHNODE NODE CUSP TRIPLEPOINT

As an example, let’s consider the curve Ĉf , where f(x, y) = −x3+

y2 + x4 + y4 over C. We have fx(x, y) = −3x2 + 4x3 = x2(−3 + 4x)

and fy(x, y) = 2y + 4y3 = 2y(1 + 4y2). In order for (x0, y0) to be

a singular point, we would need x0 = 0 or 3/4 and y0 = 0, 1
2 i, or

− 1
2 i. A quick check shows that of the 6 possible pairs (x0, y0) only

(0, 0) is on the curve, so (0, 0) is the only affine singularity. The

homogenization of f is F (X,Y, Z) = −X3Z +Y 2Z2 +X4 +Y 4, so we

have FX = −3X2Z+4X3, FY = 2Y Z2+4Y 3, and FZ = −X3+2Y Z2.

Since we’ve already found all the affine singularities, we only need to

look at infinity, so we set Z = 0. Thus, in order for (X0 : Y0 : 0) to

be a singularity, we would need

X4
0 + Y 4

0 = X3
0 = 4Y 3

0 = −X3
0 = 0.

The only way this can happen is if X0 = Y0 = 0, but that’s impossible

in P2 since Z0 is already 0. Thus the only singular point on Ĉf is the

point (0 : 0 : 1). Incidentally, the picture of the cusp above is actually

Cf .

Exercise 4.4. The equations of the other three curves above are

xy = x6 + y6, x2y + xy2 = x4 + y4, and x2 = y4 + x4. Which is

which?

Exercise 4.5. For each of the following polynomials, find all the sin-

gular points of the corresponding projective plane curve over C.

a) f(x, y) = y2 − x3

b) f(x, y) = 4x2y2 − (x2 + y2)3

c) f(x, y) = y2 − x4 − y4

You might want to sketch the affine portion (over R) of the curves

of Exercise 4.5 using a computer algebra program. (The pictures

above were generated using Mathematica.)
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Exercise 4.6. Show that a nonsingular plane curve is absolutely ir-

reducible. In other words, if f(x, y) ∈ k[x, y] defines the nonsingular

plane curve Cf , and if f = gh for some g, h ∈ k̄[x, y] where k̄ is the

algebraic closure of k, then either g ∈ k̄ or h ∈ k̄.

Exercise 4.7. Let k be a field. For arbitrary a, b ∈ k, consider the

projective plane curve defined by the polynomial F (X,Y, Z) = X3 +

aXZ2 + bZ3 − Y 2Z.

a) If the characteristic of k is not 2, for which values of a, b is the

curve singular?

b) What happens if k has characteristic 2?

4.2. Genus

Topologically, every nonsingular curve over C can be realized as a

surface in R3. For example, an elliptic curve has an equation of

the form y2 = f(x), where f(x) is a cubic polynomial in x with no

repeated roots, and can be thought of as a torus (a donut) in R3. In

general, every nonsingular curve can be realized as a torus with some

number of holes, and that number of holes is called the topological

genus of the curve. In particular, an elliptic curve has genus 1. In

general, it turns out that if f(x, y) is a polynomial of degree d such

that the curve Ĉf is nonsingular, then the topological genus of Cf

is given by the formula g = (d − 1)(d − 2)/2. This formula is called

the Plücker formula. Of course, this discussion is not rigorous. It is

intended only to motivate the following definition:

Definition 4.8. Let f(x, y) ∈ k[x, y] be a polynomial of degree d

such that Ĉf is nonsingular, then the genus of Cf (or of Ĉf ) is defined

to be

g :=
(d− 1)(d− 2)

2
.

In other words, we have defined the genus to be what the Plücker

formula gives. Although the genus of a singular curve can also be

defined, we choose not to do so here.

Exercise 4.9. For each of the following polynomials, check that the

corresponding projective plane curve is nonsingular and then find the

genus of the curve.
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a) f(x, y) = y2 − p(x), where p(x) ∈ k[x] is of degree three with

no repeated roots, and the characteristic of k is not 2.

b) f(x, y) = y2 + y − p(x), where p(x) ∈ k[x] is of degree three

with no repeated roots, and the characteristic of k is 2.

c) f(x, y) = xq+1 + yq+1 − 1 ∈ Fq2 [x], where q is a prime power.





Chapter 5

Points, Functions, and
Divisors on Curves

Definition 5.1. Let k be a field, and let C be the projective plane

curve defined by F = 0, where F = F (X,Y, Z) ∈ k[X,Y, Z] is a

homogeneous polynomial. For any field K containing k, we define a

K-rational point on C to be a point (X0 : Y0 : Z0) ∈ P2(K) such that

F (X0, Y0, Z0) = 0. The set of all K-rational points on C is denoted

C(K). Elements of C(k) are called points of degree one or simply

rational points.

For example, if C is defined by X2 + Y 2 = Z2, then (3 : 4 : 5) =

(3/5 : 4/5 : 1) ∈ C(Q) ⊂ C(C), while (3 : 2i :
√

5) = (3/
√

5 : 2i/
√

5 :

1) and (3 : −2i :
√

5) = (3/
√

5 : −2i/
√

5 : 1) are in C(C) but not in

C(Q).

Recall that complex solutions to equations over R must come in

conjugate pairs. In other words, if (x, y) = (a+ bi, c+di) satisfies the

polynomial equation f(x, y) = 0 where f(x, y) ∈ R[x, y], then (a −
bi, c− di) must also. This is essentially because complex conjugation

is an automorphism of C which fixes R. We may think of (a+bi, c+di)

and (a− bi, c− di) together of defining a single point of Cf , but that

point is of “degree two” over R. Let’s now make this idea precise for

finite fields.

29
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Assume k = Fq is a finite field, and pick n ≥ 1. Recall from

Appendix B that, up to isomorphism, there is a unique field K = Fqn

with qn elements. Further, Fq ⊂ Fqn and we have the Frobenius

automorphism σq,n : Fqn → Fqn given by σq,n(α) = αq. If C is a

projective plane curve defined over Fq, we can let this map act on the

set C(Fqn) by declaring

σq,n((X0 : Y0 : Z0)) = (Xq
0 : Y q

0 : Zq
0).

Similarly, if C is affine and (x0, y0) ∈ C(Fq), we define

σq,n((x0, y0)) = (xq
0, y

q
0).

Exercise 5.2. Recall that (X0 : Y0 : Z0) is actually an equivalence

class of points in F3
qn \ {(0, 0, 0)}. Show that if (X0 : Y0 : Z0) = (X1 :

Y1 : Z1), then (Xq
0 : Y q

0 : Zq
0) = (Xq

1 : Y q
1 : Zq

1).

Exercise 5.3. Let f(x, y) ∈ Fq[x, y] and suppose that x0, y0 ∈ Fq

satisfy the equation f(x0, y0) = 0. Show that f(σq,n(x0, y0)) = 0 as

well.

Definition 5.4. Let C be a nonsingular projective plane curve. A

point of degree n on C over Fq is a set P = {P0, . . . , Pn−1} of n

distinct points in C(Fqn) such that Pi = σi
q,n(P0) for i = 1, . . . , n−1.

It is not hard to see that if C and C ′ are curves defined over Fq by

polynomials of degrees d and e respectively, then the de points of in-

tersection in P2(F̄q) guaranteed by Bezout’s theorem (Theorem 3.11)

cluster into points of varying degrees over Fq, with the sum of those

degrees being de.

As an example of a curve with points of higher degree, let C0 be

the projective plane curve over F3 corresponding to the affine equation

y2 = x3 + 2x + 2.

Exercise 5.5. Check that C0 is nonsingular and show that it has

genus 1.

By plugging in the values 0, 1, 2 for x, we see that there are no F3-

rational affine points on C. However, homogenizing gives the equation

Y 2Z = X3 + 2XZ2 + 2Z3 and we see that there is a unique point

P∞ := (0 : 1 : 0) at infinity. Thus C0(F3) = {P∞}.
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Since t2+1 is irreducible over F3, we can write F9 = F3[t]/(t
2+1).

Letting α be the element of F9 corresponding to t, we have F9 =

{a + bα | a, b ∈ F3}, where α2 = −1 = 2. Some computations yield

C0(F9) = {(0 : α : 1), (0 : 2α : 1), (1 : α : 1), (1 : 2α : 1), (2 : α : 1),

(2, 2α : 1), P∞}.

The Frobenius σ3,2 : F9 → F9 satisfies σ3,2(α) = α3 = α·α2 = 2α,

so we see that C0(F9) = Q1 ∪Q2 ∪Q3 ∪ {P∞}, where Q1 = {(0 : α :

1), (0 : 2α : 1)}, Q2 = {(1 : α : 1), (1 : 2α : 1)}, and Q3 = {(2 : α :

1), (2 : 2α : 1)} are the only three points of degree two on C0.

Similarly, writing F27 = F3[t]/(t
3 + 2t + 2) and letting ω be the

element of F27 corresponding to t, we have F27 = {a+bω+cω2 | a, b, c ∈
F3} and ω3 = −2− 2ω = 1 + ω. Thus, we have

C0(F27) = {(ω : 0 : 1), (1 + ω : 0 : 1), (2 + ω : 0 : 1), (2ω : 1 : 1),

(2 + 2ω : 1 : 1), (1 + 2ω : 1 : 1), (2ω : 2 : 1),

(2 + 2ω : 2 : 1), (1 + 2ω : 2 : 1), (2ω2 : 1 + ω2 : 1),

(2 + ω + 2ω2 : 2 + 2ω + ω2 : 1),

(2 + 2ω + 2ω2 : 2 + ω + ω2 : 1), (2ω2 : 2 + 2ω2 : 1),

(2 + ω + 2ω2 : 1 + ω + 2ω2 : 1),

(2 + 2ω + 2ω2 : 1 + 2ω + 2ω2 : 1),

(1 + 2ω2 : 1 + ω2 : 1), (ω + 2ω2 : 2 + 2ω + ω2 : 1),

(2ω + 2ω2 : 2 + ω + ω2 : 1), (1 + 2ω2 : 2 + 2ω2 : 1),

(ω + 2ω2 : 1 + ω + 2ω2 : 1),

(2ω + 2ω2 : 1 + 2ω + 2ω2 : 1),

(2 + 2ω2 : 1 + ω2 : 1), (1 + ω + 2ω2 : 2 + 2ω + ω2 : 1),

(1 + 2ω + 2ω2 : 2 + ω + ω2 : 1), (2 + 2ω2 : 2 + 2ω2 : 1),

(1 + ω + 2ω2 : 1 + ω + 2ω2 : 1),

(1 + 2ω + 2ω2 : 1 + 2ω + 2ω2 : 1), P∞}

The Frobenius σ3,3 : F27 → F27 satisfies σ3,3(ω) = ω3 = 1 + ω, so

we see that C0(F27) = R1 ∪ R2 ∪ · · · ∪ R9 ∪ {P∞} where R1, . . . , R9

are the nine points of degree three on C0. For example, we could
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take R1 = {(ω : 0 : 1), σ3,3((ω : 0 : 1)), σ2
3,3((ω : 0 : 1))} = {(ω : 0 :

1), (1 + ω : 0 : 1), (2 + ω : 0 : 1)}.

Exercise 5.6. Let C be the projective plane curve defined by the

equation Y qZ + Y Zq = Xq+1 over the field Fq2 , where q is a power

of a prime. C is called a Hermitian curve.

a) Show that C is nonsingular and compute the genus of C.

b) Set q = 2 and find C(F4).

c) For an arbitrary prime power q, show that there is a unique

point at infinity on C.

d) Again for an arbitrary prime power q, prove that #C(Fq2) =

q3 + 1.

We remarked earlier that if C and C ′ are two projective plane

curves over Fq defined by polynomials of degrees d and e respectively,

then the set of points over F̄q in which they intersect will cluster into

points P1, P2, . . . , P` of varying degrees over Fq, where a point is listed

more than once if the intersection of the two curves is with multiplicity

greater than one there. Further, we have de = r1 +r2 + · · ·+r`, where

ri is the degree of the point Pi over Fq. To express this, we might

write C ∩ C ′ = P1 + · · ·+ P` and call C ∩ C ′ the intersection divisor

of C and C ′. With this motivation, we make the following definition:

Definition 5.7. Let C be a curve defined over Fq. A divisor D on

C over Fq is an element of the free abelian group on the set of points

(of arbitrary degree) on C over Fq. Thus, every divisor is of the form

D =
∑

nQQ, where the nQ are integers and each Q is a point (of

arbitrary degree) on C. If nQ ≥ 0 for all Q, we call D effective and

write D ≥ 0. We define the degree of the divisor D =
∑

nQQ to be

deg D =
∑

nQ deg Q. Finally, the support of the divisor D =
∑

nQQ

is suppD = {Q |nQ 6= 0}.

Note that the support of D is always a finite set and that the

intersection divisor C ∩C ′ introduced above is an effective divisor of

degree de.

Let’s now return to our example where C0 is the projective plane

curve defined over F3 corresponding to the affine equation y2 = x3 +
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2x + 2. If we set D = 5P∞ − 2Q3 + 7R1, then D is a divisor on C0

over F3 of degree 5(1)− 2(2) + 7(3) = 22 with support {P∞, Q3, R1}.
Note that (0 : α : 1) + (ω : 0 : 1) is not a divisor on C0 over F3 since

(0 : α : 1) and (ω : 0 : 1) are not points on C0 over F3.

Definition 5.8. Let F (X,Y, Z) be the polynomial which defines the

nonsingular projective plane curve C over the field Fq. The field of

rational functions on C is

Fq(C) :=








g(X,Y, Z)

h(X,Y, Z)

∣∣∣∣
g, h ∈ Fq[X,Y, Z]

are homogeneous

of the same degree



 ∪ {0}


 / ∼

where g/h ∼ g′/h′ if and only if gh′ − g′h ∈ 〈F 〉 ⊂ Fq[X,Y, Z].

Exercise 5.9. Show that Fq(C) is indeed a field and that it contains

Fq as a subfield.

Returning again to our example of the curve C0 defined over F3,

we have F (X,Y, Z) = Y 2Z −X3 − 2XZ2 − 2Z3. We see that X2/Z2

and (Y 2 + XZ + Z2)/XZ are the same element of F3(C0) since

(X2)(XZ)− (Z2)(Y 2 + XZ + Z2) = 2Z(Y 2Z −X3 − 2XZ2 − 2Z3)

in F3[X,Y, Z].

Let us now return to our general discussion. Let C be a projective

plane curve defined over Fq, and let f := g/h ∈ Fq(C). By Bezout’s

theorem (Theorem 3.11), we have that the curves defined by g = 0

and h = 0 each intersect C in exactly de points of P2(k̄), where d is

the degree of the polynomial defining C and e = deg g = deg h.

Definition 5.10. Let C be a curve defined over Fq and let f :=

g/h ∈ Fq(C). The divisor of f is defined to be div(f) :=
∑

P −∑
Q, where

∑
P is the intersection divisor C ∩ Cg and

∑
Q is the

intersection divisor C ∩ Ch.

Let f = g/h be a rational function on C. Then intuitively, the

points where C and the curve defined by g intersect are the zeros

of f and the points where C and the curve defined by h intersect

are the poles of f , so we think of div(f) as being “the zeros of f

minus the poles of f”. Since deg(C ∩ Cg) = deg(C ∩ Ch) = de, we

have deg div(f) = 0. Intuitively, f has the same number of zeros
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as poles. Note that if P appears in both C ∩ Cg and C ∩ Ch, then

some cancellation will occur. In particular, P is only considered to

be a zero (resp., pole) of f if after the cancellation, P still appears in

div(f) with positive (resp., negative) coefficient. Notice also that the

divisor of a constant function f ∈ Fq ⊂ Fq(C) is just 0.

Since rational functions are actually equivalence classes, we need

to be sure that our definition of div(f) is independent of the choice

of representative for the equivalence class of f . It is, but the proof

is messy. Instead, we’ll just illustrate this in our example. On our

curve C0 over F3 defined by Y 2Z −X3 − 2XZ2 − 2Z3 = 0, we need

to compute the intersection divisor of C0 with the curves defined by

each of the following equations: X2 = 0, Z2 = 0, Y 2 + Z2 + XZ = 0,

and XZ = 0. Any point (X0 : Y0 : Z0) of intersection between the

line X = 0 and the curve C0 must satisfy X0 = 0 and Z0(Y
2
0 − 2Z2

0 ).

Writing F9 = F3[t]/(t
2 + 1) and letting α denote the element of F9

corresponding to t, we have that α2 = −1 = 2, so the polynomial

(Y 2
0 −2Z0)

2 factors as (Y −αZ)(Y +αZ). This means that our point

(X0 : Y0 : Z0) must satisfy X0 = 0 and one of the following three

conditions: Z0 = 0, Y0 = αZ0, or Y0 = 2αZ0. Thus our three points

of intersection in P2(F9) are P∞, (0 : α : 1) and (0 : 2α : 1). Since

{(0 : α : 1), (0 : 2α : 1)} is our point Q1 from before, we have that the

intersection divisor of the line X = 0 with C0 is P∞+Q1. Therefore,

the intersection divisor of the “double line” X2 = 0 and the curve

C0 is 2P∞ + 2Q1. Notice that this divisor does indeed have degree

6 = 2 · 3.
Exercise 5.11. Show that the intersection divisor of C0 with the

curve defined by Z2 = 0 is 6P∞. Show that the intersection divisor

of C0 with the curve defined by XZ = 0 is 4P∞ + Q1.

The intersection of C0 with the curve defined by Y 2+Z2+XZ = 0

is a little trickier to compute since this latter curve is not just the

union of two lines. However, the only point at infinity on the latter

curve is (1 : 0 : 0) and the only point at infinity on C0 is P∞ = (0 :

1 : 0), so the two curves do not intersect at infinity. Thus we may

assume Z 6= 0, divide through by Z2, and set x = X/Z, y = Y/Z to

get the affine portion of C0 defined by y2 − x3 − 2x− 2 = 0 and the

other curve defined by y2 + 1 + x = 0. We still don’t have a product
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of two lines, but we can write x = −(1+y2) from the second equation

and substitute that in. We have 0 = y2 + (1 + y2)3 + 2(1 + y2) + 2 =

y6 +1 = (y2 +1)3 = (y−α)3(y+α)3. Thus these two curves intersect

with multiplicity 3 at Q1, so the intersection divisor is 3Q1.

Putting the results of the last two paragraphs and the exercise in

between them together, we have div(X2/Z2) = (2P∞+2Q1)−6P∞ =

2Q1 − 4P∞ and div((Y 2 + XZ + Z2)/XZ) = 3Q1 − (4P∞ + Q1) =

2Q1 − 4P∞, so the two divisors do indeed agree.

Now that we know what divisors, rational functions, and divisors

of rational functions are, we are ready for our next definition.

Definition 5.12. Let D be a divisor on the nonsingular projective

plane curve C defined over the field Fq. Then the space of rational

functions associated to D is

L(D) := {f ∈ Fq(C) |div(f) + D ≥ 0} ∪ {0}.

A few comments are in order. First, it’s easy to see that L(D) is a

vector space over Fq. In fact, it’s finite dimensional, but this is harder.

By collecting positive and negative coefficients appearing in the divi-

sor D, we can write D = Dpos−Dneg, where Dpos and Dneg are effec-

tive divisors. Also, we can write div(f) as a difference of two effective

divisors by saying div(f) = (zeros of f) − (poles of f) . Therefore,

we have div(f)+D = (Dpos− (poles of f) )+( (zeros of f) −Dneg).

Intuitively, then, f ∈ Fq(C) is in L(D) if and only if f has “enough”

zeros and “not too many” poles.

Exercise 5.13. Let D be a divisor on a nonsingular projective plane

curve C defined over the field Fq.

a) Show that if deg D ≤ 0 then L(D) = {0}.
b) Show that Fq ⊂ L(D) if and only if D ≥ 0.

We close this chapter with a statement of the important theorem

of Riemann and Roch:

Theorem 5.14. (Riemann-Roch Theorem) Let C be a nonsingular

projective plane curve of genus g defined over the field Fq and let D

be a divisor on X. Then dim L(D) ≥ deg D + 1 − g. Further, if
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deg D > 2g − 2, then

dim L(D) = deg D + 1− g.

Let us return one final time to our ongoing example. We have the

curve C0 defined over F3 by the equation Y 2Z −X3 − 2XZ2 − 2Z3.

Recall that Q1 is the point {(0 : α : 1), (0 : 2α : 1)} of degree 2 on C0,

where α2 + 1 = 0. We can put the results above together to see that

the divisor of the rational function X/Z on C0 is Q1− 2P∞. Further,

it is easy to check that the divisor of the rational function Y/Z is

R1−3P∞, where R1 is the point {(ω : 0 : 1), (1+ω : 0 : 1), (2+ω : 0 :

1)} of degree three on C0 with ω ∈ F27 satisfying ω3 = 1 + ω. Thus,

for any i, j ≥ 0, we have div(X iY j/Zi+j) = iQ1 + jR1− (2i+3j)P∞.

Now let r be a positive integer and set D = rP∞. Using the

Riemann-Roch Theorem and Exercise 5.5, we know that dim L(D) =

deg(D) + 1 − g = r + 1 − 1 = r. When r = 1, we have Fq = L(D)

by Exercise 5.13, so {1} is a basis for L(D). When r = 2, we have

X/Z ∈ L(D) by the previous paragraph, and since {1, X/Z} is clearly

linearly independent, it must be a basis for L(D). When r = 3, we see

that div(Y/Z)+D = R1−3P∞+3P∞ = R1 ≥ 0 and so {1, X/Z, Y/Z}
is a basis for L(D).

Exercise 5.15. Let C1 be the projective elliptic curve defined by the

equation Y 2Z + Y Z2 = X3 + XZ2 + Z3 over F2.

a) Check that C1 is nonsingular and has genus 1.

b) Find all points of degree 1, 2, 3, and 4 on C1 over F2.

c) Find div(f) for each of the following rational functions on C1:

1, X/Z, Y/Z, X2/Z2, XY/Z2.

d) Letting P∞ denote the unique point at infinity on C1, Find a

basis for L(rP∞) for r = 0, 1, 2, 3, 4, 5.

e) Find div(XiY j/Zi+j), where i and j are arbitrary nonnegative

integers.

f) For an arbitrary nonnegative integer r, find a basis for L(rP∞).



Chapter 6

Algebraic Geometry
Codes

In this chapter we put our understanding of codes together with our

understanding of algebraic geometry to describe Goppa’s construction

of algebraic geometric codes. To avoid confusion, the letter C will be

reserved in this chapter to refer to codes, while the letter X will be

used for curves. Also, we will be always be working over the finite

field Fq, so the symbol k can unambiguously be used to denote a

positive integer (the dimension of a code) as in the earlier chapters

on coding theory.

Recall the definition of the Reed-Solomon Codes (Definition 1.8):

We let Lk−1 be the set of polynomials f ∈ Fq[x] of degree at most

k − 1 (plus the zero polynomial). Then Lk−1 is a vector space of

dimension k over Fq. If the q − 1 elements of F×q are α1, . . . , αq−1,

then the Reed-Solomon code RS(k, q) is defined to be

RS(k, q) := {(f(α1), . . . , f(αq−1)) | f ∈ Lk−1}.

Recall that the projective plane was defined as

P2(Fq) = (F3
q \ {(0, 0, 0)})/ ∼,

where (X0, Y0, Z0) ∼ (X1, Y1, Z1) if and only if there is some α ∈ k×

with X1 = αX0, Y1 = αY0, and Z1 = αZ0. In the same spirit, we

have:

37
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Definition 6.1. The projective line P1(Fq) is defined to be

(F2
q \ {(0, 0)})/ ∼,

where (X0, Y0) ∼ (X1, Y1) if and only if there is some α ∈ F×q with

X1 = αX0 and Y1 = αY0.

Writing (X0 : Y0) for the equivalence class of the point (X0, Y0),

we have that

P1(Fq) = {(α : 1) |α ∈ Fq} ∪ {(1 : 0)}

We may think of P1 as the line defined by the equation Z = 0 in P2.

It is a curve of genus 0.

Exercise 6.2. Writing P∞ for the point (1 : 0), set D = (k − 1)P∞.

Show that L(D) = Lk−1 (where we identify a polynomial f(x) ∈ Fq[x]

of degree d with its homogenization Y df(X/Y ) ∈ Fq[X,Y ]).

If we set Pi = (αi : 1) (using the numbering of the elements

of F×q as above), we have the following alternate description of the

Reed-Solomon code:

RS(k, q) = {(f(P1), . . . , f(Pn)) | f ∈ L((k − 1)P∞)}

Goppa’s idea [Go] was to generalize this. Let X be a projective,

nonsingular plane curve over Fq, and let D be a divisor on X. Let

P = {P1, . . . , Pn} ⊂ X(Fq) be a set of n distinct Fq-rational points

on X. If we assume that P ∩ suppD = ∅, then no Pi can be a pole

of any f ∈ L(D), and, in fact, f(Pi) ∈ Fq for any f ∈ L(D) and any

Pi ∈ P.

Definition 6.3. Let X, P, and D be as above. Then the algebraic

geometric code associated to X, P, and D is

C(X,P, D) := {(f(P1), . . . , f(Pn)) | f ∈ L(D)} ⊂ Fn
q .

In other words, the algebraic geometric code C(X,P, D) is the

image of the evaluation map

ε : L(D) → Fn
q

f 7→ (f(P1), . . . , f(Pn))
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Since L(D) is a vector space over Fq and the evaluation map ε

is a linear transformation, we see that C(X,P, D) is a linear code.

Further, its length is obviously n = #P. What about the dimension?

Clearly, it’s at most dim L(D), and it’s exactly dim L(D) if and only

if ε is one-to-one. This is true if and only if the kernel of ε is trivial

(Exercise A.23). So suppose ε(f) = 0. Then f(P1) = · · · = f(Pn) =

0, so the coefficient of each Pi in the divisor div(f) is at least 1. Since

no Pi is in suppD, we have that div(f)+D−P1−· · ·−Pn ≥ 0, which

means that f ∈ L(D − P1 − · · · − Pn). If we add a hypothesis that

deg D < n, then the divisor D−P1−· · ·−Pn has negative degree, so

its associated space of rational functions is {0} by Exercise 5.13. This

means f = 0, so dim C = dim L(D). In fact, we have the following

theorem:

Theorem 6.4. Let X be a nonsingular, projective plane curve of

genus g, defined over the field Fq. Let P ⊂ X(Fq) be a set of n

distinct Fq-rational points on X, and let D be a divisor on X sat-

isfying 2g − 2 < deg D < n. Then the algebraic geometric code

C := C(X,P, D) is linear of length n, dimension k := deg D + 1− g,

and minimum distance d, where d ≥ n− deg D.

Proof. We’ve already shown that C is linear of length n and dimen-

sion dim L(D), since deg D < n. That dim L(D) = deg D + 1 − g is

exactly the statement of the Riemann-Roch Theorem, since deg D >

2g − 2. To get the lower bound on the minimum distance of C,

we use an argument similar to the one we used to compute k. Let

ε(f) = (f(P1), . . . , f(Pn)) ∈ C be a codeword of minimum nonzero

weight d. Then exactly d coordinates of ε(f) are nonzero, so without

loss of generality, we may assume f(Pd+1) = · · · = f(Pn) = 0. As

before, this means that the divisor div(f) + D − Pd+1 − · · · − Pn is

effective, and by Exercise 5.13, the divisor D− Pd+1 − · · · − Pn must

have nonnegative degree. In other words, we have deg D−(n−d) ≥ 0,

or d ≥ n− deg D as desired.

Let C = C(X,P, D) be an algebraic geometric code and let

f1, f2, . . . , fk be a basis for the vector space L(D) over Fq. Under

the conditions of the theorem, we know that dim C = k, and so we

know that ε(f1), ε(f2), . . . , ε(fk) is a basis for C. This means that



40 6. Algebraic Geometry Codes

the matrix 


f1(P1) f1(P2) . . . f1(Pn)

f2(P1) f2(P2) . . . f2(Pn)
...

...
. . .

...

fk(P1) fk(P2) . . . fk(Pn)




is a generator matrix for C.

Exercise 6.5. Let E be the projective plane curve defined by the

equation Y 2Z +Y Z2 = X3 +XZ2 +Z3 over the field F2. (This is the

same curve we studied in Exercise 5.15.) Let P = E(F8) \ {P∞}. Let

C be the algebraic geometric code C = C(E,P, 5P∞), defined over

F8.

a) What do the theoretical results say about the parameters of C?

b) Find a generator matrix for C.

c) Determine the exact parameters of C.

Exercise 6.6. Recall that an MDS code is a code which meets the

Singleton Bound (Theorem 2.1). Show that every algebraic geometric

code defined from the projective line is MDS.

Exercise 6.7. (adapted from [S]) Let α = (α1, . . . , αn), where the

αi are distinct elements of Fq, let v = (v1, . . . , vn) where the vi are

nonzero (not necessarily distinct) elements of Fq, and let k be a fixed

integer, 1 ≤ k ≤ n. The Generalized Reed-Solomon code is defined to

be

GRSk(α, v) := {v1f(α1), . . . , vnf(αn) | f ∈ Lk−1}.
Here, as before, Lk−1 denotes the k-dimensional Fq-vector space of

polynomials over Fq of degree at most k − 1.

a) Find values for α and v so that GRSk(α, v) = RS(k, q).

b) Show that there is a polynomial u = u(z) ∈ Fq[z] satisfying

u(αi) = vi for i = 1, . . . , n.

c) Find div(u).

d) Show that there is a set P ⊂ P1(Fq) and a divisor D on P1 such

that GRSk(α, v) = C(P1,P, D).



Chapter 7

Good Codes from
Algebraic Geometry

Now that we understand Goppa’s construction of algebraic geomet-

ric codes, let’s investigate the result of Tsfasman, Vladut, and Zink.

Recall that in 1982, just after Goppa ([Go]) announced his construc-

tion in 1977, Tsfasman, Vladut, and Zink ([TVZ]) proved that there

was a sequence of algebraic geometric codes which had parameters

which were better than those guaranteed by the Asymptotic Gilbert-

Varshamov Bound (Theorem 2.9).

We begin by exploring the asymptotic parameters of algebraic

geometric codes. Let C = C(X,P, D) be an algebraic geometric

code, where X is a curve of genus g defined over Fq, P is a set of

Fq-rational points on X of size n := #P, and D is a divisor on X

satisfying 2g−2 < deg D < n. Theorem 6.4 tells us that C is a linear

code of length n, dimension k, and minimum distance d ≥ n−deg D.

Thus the information rate R of C is k/n = (deg D + 1 − g)/n and

the relative minimum distance δ of C is d/n ≥ (n − deg D)/n. One

way of thinking about the fact that we want both R and δ large while

acknowledging that there is a trade-off between these values is to say

that we want R + δ large. In our situation, we have

R + δ ≥ deg D + 1− g

n
+

n− deg D

n
=

n + 1− g

n
= 1 + 1/n− g/n.

41
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For long codes, we consider the limit as n gets large. This means we

consider a sequence of algebraic geometric codes of increasing length.

To construct these codes, we need a sequence of curves Xi of genus

gi, a set of ni rational points on Xi, and a chosen divisor Di on Xi.

Then, we obtain

lim
n→∞

(R + δ) ≥ 1− lim
i→∞

gi/ni.

Since we want R+δ to be big, we want limn→∞(g/n) to be small,

or equivalently, we want limn→∞(n/g) to be as large as possible.

Remembering that n ≤ #X(Fq) for a curve X of genus g, we are

prompted to make the following definitions:

Definition 7.1. Let q be a prime power. Then for any nonnegative

integer g, we define

Nq(g) := max{#X(Fq) |X is a curve over Fq of genus g}
and

A(q) := lim sup
g→∞

Nq(g)/g.

Our question is now: What is the value of A(q)? Let’s make

sure we understand the relevance of this question. Suppose we have a

sequence of curves Xi defined over Fq satisfying limi→∞Ni/gi = A(q),

where gi is the genus of Xi and Ni = #Xi(Fq). For each i, pick

Qi ∈ Xi(Fq), and set Pi = X(Fq) \ {Qi}. Also pick positive integers

ri with 2gi − 2 < ri < Ni − 1 = Pi. Then the algebraic geometric

code Ci = C(X,Pi, riQi) has length Ni−1, dimension ri +1−gi, and

minimum distance at least Ni − 1− ri. If Ri is the information rate

of Ci and δi is the relative minimum distance of Ci, then we have

Ri + δi ≥ 1 + 1/(Ni − 1)− gi/(Ni − 1).

Setting R := limi→∞Ri and δ := limi→∞ δi, we have

R + δ ≥ 1− 1/A(q)

Thus, recalling the definition

αq(δ) := lim sup
n→∞

1

n
logq Aq(n, δn),

we have proven that αq(δ) ≥ −δ + 1 − 1/A(q). Since the equation

R = −δ+1−1/A(q) defines a line of negative slope, it will intersect the
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Gilbert-Varshamov curve (the graph of R = 1−Hq(δ)) in either 0, 1,

or 2 points. If it intersects in two points, then we have an improvement

on the Gilbert-Varshamov bound in the interval between those two

points.

Thus, we are back to the question of the value of A(q). Non-

asymptotically, the question is: How many rational points can a curve

of genus g have? To get a feel for things, let’s investigate this first.

If we restrict ourselves to plane curves, as we’ve done in this course,

then the number of rational points is clearly bounded by #P2(Fq) =

q2 + q + 1. However, not every curve is a plane curve, and we can get

curves with many more rational points by removing this restriction.

In this more general setting, the fundamental result in the area is:

Theorem 7.2. (Hasse-Weil) Let X be a nonsingular projective curve

of genus g over the field Fq and set N = #X(Fq). Then

|N − (q + 1)| ≤ 2g
√

q.

A curve with exactly q + 1 + 2g
√

q rational points is called maxi-

mal. Clearly, maximal curves can only exist over fields with cardinal-

ity a perfect square, and if q is not a perfect square, we can certainly

replace the right-hand side of the above inequality with b2g√qc. With

work, we can do a little better:

Theorem 7.3. (Serre) In the situation of Theorem 7.2, one has

|N − (q + 1)| ≤ gb2√qc.

Exercise 7.4. Show that the Hermitian curve (Exercise 5.6) is max-

imal, and compute the theoretical parameters of C(X,P, D) where

P = X(Fq2) \ {P∞} and D = rP∞ for appropriate values of r.

Unfortunately, the improvement of Theorem 7.3 isn’t enough to

guarantee that curves meeting the bound exist. In fact, it can be

shown that the bound of Theorem 7.3 cannot be met if g > (q−√q)/2.

Better bounds do exist for curves of large genus, but they’re quite

messy.

Finally, let’s return to the asymptotic question of the value of

A(q). There is the following upper bound on A(q):
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Theorem 7.5. (Drinfeld-Vladut, [VD]) For any prime power q, we

have A(q) ≤ √
q − 1.

On the other hand, the following result is due to Tsfasman,

Vladut, and Zink in the cases m = 1 and m = 2, and to Ihara in

general:

Theorem 7.6. ([I], [TVZ]) Let q = p2m be an even power of the

prime p. Then there is a sequence of curves Xi defined over Fq having

genus gi and Ni rational points such that

lim
i→∞

Ni/gi =
√

q − 1.

The curves Xi are modular and a study of them is beyond the

scope of this course. However, putting everything together, we have

that A(q) =
√

q − 1 when q is a perfect square, giving the following

theorem:

Theorem 7.7. (Tsfasman-Vladut-Zink Bound [TVZ]) Let q be a

perfect square. Then

αq(δ) ≥ −δ + 1− 1

(
√

q − 1)
.

By doing a little computation, it’s not difficult to see that the

“Tsfasman-Vladut-Zink line” R = −δ + 1 − 1/(
√

q − 1) and the

“Gilbert-Varshamov curve” R = 1−Hq(δ) will intersect in exactly two

points whenever q ≥ 49. Therefore, for all perfect squares q ≥ 49, the

Tsfasman-Vladut-Zink Bound gives an improvement on the Gilbert-

Varshamov bound for the possible asymptotic parameters of codes

over the field Fq.

Exercise 7.8. For each of the following values of q, draw a care-

ful plot of the asymptotic Plotkin bound, the asymptotic Gilbert-

Varshamov bound, and the Tsfasman-Vladut-Zink bound on a single

set of axes: q = 25, q = 49, and q = 64.



Appendix A

Abstract Algebra
Review

Throughout the course, we need some concepts which you have prob-

ably already seen in abstract algebra. The purpose of this appendix

is to review those concepts. It is not intended to serve as a first in-

troduction to abstract algebra, and the reader who has not seen this

material before is referred to any of the several good undergraduate

abstract algebra texts, for example [Ga].

A.1. Groups

Definition A.1. A group is a set G equipped with one operation,

usually denoted by · (or concatenation). Although this operation

takes on different meanings in different groups (addition, multiplica-

tion, composition of functions, etc.), it is usually called multiplication

in the general case. Every group must satisfy the following properties:

• Existence of Identity: There is an element eG ∈ G such that

eGa = a = aeG for all a ∈ G.

• Associativity: For all a, b, c ∈ G, we have (ab)c = a(bc).

• Existence of Inverses: For each a ∈ G, there is an element b ∈ G

such that ab = eG = ba.

45
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A few comments: First notice that multiplication need not be

commutative. In fact, a group G is called abelian if ab = ba for

all a, b ∈ G. Also, it’s not hard to show that the identity of G is

unique, which is why we can unambiguously call it “eG”. Similarly,

the inverse of each element of G is unique, so we denote the inverse

of x ∈ G as x−1. Some examples of groups are: Z under addition,

Q \ {0} under multiplication, GLn(Q) (the set of invertible n × n

matrices with entries in Q) under matrix multiplication, SA (all the

one-to-one and onto functions from a set A to itself) under function

composition.

A subgroup H of a group G is a subset of G which is a group

under the same operation as G. A subgroup H is called normal if

whenever x ∈ G and h ∈ H we have xhx−1 ∈ H. A cyclic group is

a group C which has an element a such that C = {ak | k ∈ Z}. In

this case we write C = 〈a〉. The order of a group is the number of

elements it has. It is not difficult to show that, up to isomorphism,

(see Definition A.21 below) there is only one cyclic group of order n

for each positive integer n. We will use Cn to denote this group.

We’ll need one theorem from finite group theory in Appendix B:

Theorem A.2. (Fundamental Theorem of Finite Abelian Groups)

Let G be a finite abelian group. Then G can be written as a direct

sum of cyclic groups. In fact, there are two canonical ways of doing

this:

• There are primes p1, . . . , pk and positive integers n1, . . . , nk

such that

G ∼= Cp
n1

1

⊕ · · · ⊕ Cp
nk
k

• There are integers r1, . . . , rt with ri+1 dividing ri for all i and

such that

G ∼= Cr1
⊕ · · · ⊕ Crt

A.2. Rings, Fields, Ideals, and Factor Rings

Definition A.3. A ring is a set R equipped with two operations,

usually denoted by + and · (or concatenation). As with the operation

in a group, the meanings of these operations will vary from ring to
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ring, but we tend to call + addition and · multiplication in general.

Every ring must satisfy all of the following properties:

• Existence of Additive Identity: There is an element 0 ∈ R such

that 0 + a = a = a + 0 for all a ∈ R.

• Existence of Additive Inverses: For each a ∈ R, there is an

element b ∈ R such that a + b = 0 = b + a.

• Commutativity of Addition: For all a, b ∈ R we have a + b =

b + a.

• Associativity of Addition: For all a, b, c ∈ R we have (a+b)+c =

a + (b + c)

• Existence of Multiplicative Identity: There is an element 1 ∈ R

such that 1a = a = a1 for all a ∈ R.

• Associativity of Multiplication: For all a, b, c ∈ R we have

(ab)c = a(bc).

• Distributive Laws: For all a, b, c ∈ R we have a(b+ c) = ab+ac

and (a + b)c = ac + bc.

Again, note that the multiplication in R need not be commuta-

tive. R is an abelian group under addition, but multiplicative inverses

need not exist. (An element u of a ring R is called a unit of R if there

is an element v ∈ R such that uv = 1 = vu.) Also, it’s important

to be aware that sometimes authors don’t insist that a multiplicative

identity exists, but we will always say it does. Exercise A.4 below

shows that the additive and multiplicative identities are unique; this

is what enables us to call them “0” and “1” without ambiguity. Sim-

ilarly, Exercise A.5 below shows that both the additive inverse and

the multiplicative inverse (if it exists) of a are unique, so we denote

these inverses by −a and a−1 respectively.

Some familiar examples of rings are: Z (the integers), Z/nZ (the

integers modulo n), Q (the rationals), Q[x] (polynomials with rational

coefficients), Mn(Q) (n × n matrices with entries in Q). Note that

Mn(Q) is an example where multiplication is not commutative.

Exercise A.4. Let R be a ring.

a) Suppose that a and b are elements of R such that a + x = x

and b + x = x for every x ∈ R. Show that a = b.
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b) Suppose that c and d are elements of R such that cx = x and

dx = x for every x ∈ R. Show that c = d.

Exercise A.5. Let R be a ring and let a ∈ R.

a) Suppose that for some b, c ∈ R we have a + b = 0 = b + a and

a + c = 0 = c + a. Show that b = c.

b) Let a ∈ R. Suppose that for some b, c ∈ R, we have ab = 1 = ba

and ac = 1 = ca. Show that b = c.

Exercise A.6. Let i =
√
−1 and set Q[i] = {a + bi | a, b ∈ Q}. Show

that Q[i] is a ring under normal addition and multiplication of com-

plex numbers. What is the “0”? What is the “1”? Is this ring

commutative? What are the units of this ring?

Definition A.7. A field is a ring which satisfies two additional prop-

erties:

• Commutativity of Multiplication: For all a, b ∈ R, ab = ba.

• Existence of Multiplicative Inverses: For all a ∈ R \ {0} there

is a b ∈ R \ {0} such that ab = 1 = ba.

Some familiar examples of fields are: Q, R (the reals), C (the

complex numbers), Z/pZ (the integers modulo p, where p is prime),

Q(x) (quotients of polynomials with rational coefficients). There are

also the finite fields Fq where q is a power of a prime; we’ll look at

these more in Appendix B.

Exercise A.8. Show that Z/pZ is a field if p is prime. Find 2−1 as

an element of Z/5Z.

We will be working with rings of the form k[x], where k is a field,

quite a bit. One important fact about these polynomial rings is that

the Division Algorithm holds: If a(x), b(x) ∈ k[x] with b(x) 6= 0, then

there are unique q(x), r(x) ∈ k[x] such that a(x) = b(x)q(x) + r(x),

where either r(x) = 0, or the degree of the polynomial r(x) is strictly

smaller than the degree of the polynomial b(x).

Exercise A.9. Let k = Z/5Z, and set a(x) = 3x4 + x3 + 2x2 + 1 ∈
k[x], b(x) = x2 + 4x + 2 ∈ k[x]. Find q(x), r(x) ∈ k[x] such that

a(x) = b(x)q(x) + r(x).
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Definition A.10. An ideal in a ring R is a nonempty subset I ⊆ R

which satisfies the following properties:

• Containment of additive identity: 0 ∈ I

• Closure under addition: For all a, b ∈ I, a + b ∈ I.

• Containment of additive inverses: For all a ∈ I, −a ∈ I.

• Absorption: If a ∈ I and r ∈ R then ar ∈ I and ra ∈ I.

Note that since I ⊆ R is assumed to be nonempty, the first three

conditions above could be replaced by the following single condition:

• Subgroup under addition: For all a, b ∈ I, a− b ∈ I.

It should be mentioned that what we have defined here is actually

what is called a two-sided ideal. Left ideals have only half the absorp-

tion property: If a ∈ I and r ∈ R then ar ∈ I. Right ideals have the

other half. If R is commutative, then there’s no difference. For us,

just defining two-sided ideals will suffice because we will henceforth

assume that

all rings we work with are commutative.

An ideal I of a (commutative) ring R is called principal if there is

some a ∈ I such that I = {ar | r ∈ R}. In this case we write I = 〈a〉
or I = aR.

Two examples of principal ideals are: the even integers (as an

ideal of the integers) and the set of all polynomials f(x) ∈ Q[x] satis-

fying f(1) = 0 (this is (x− 1)Q[x]). An example of an ideal which is

not principal is 〈x, y〉 := {xf(x, y)+yg(x, y) | f, g ∈ Q[x, y]} ⊆ Q[x, y].

Exercise A.11. Let I be an ideal of the ring R. Show that I = R if

and only if some unit of R is in I.

Exercise A.12. Let k be a field. What are the ideals of k?

Exercise A.13. Let k be a field. Prove that every ideal of the ring

k[x] is principal. Hint: Given an ideal I of k[x], pick f ∈ I of smallest

possible degree and then use the division algorithm.

If R is a ring with operations + and · and I is an ideal of R,

we can define a new ring R/I called the factor ring of R modulo I.
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To do this, we must say what the set R/I is, and we must give two

operations on that set which satisfy all the required properties.

First, we must define cosets. Let r ∈ R. The coset of I in R

corresponding to r is r + I = {r + i | i ∈ I}. Now, as a set, we define

R/I to be the set of all cosets of I in R:

R/I := {r + I | r ∈ R}

Exercise A.14. Show that for r, s ∈ R, either r + I = s + I or

(r + I) ∩ (s + I) = ∅.

We’ll (temporarily) denote the addition on R/I by ⊕ and the

multiplication by � to avoid confusion. Then we define

(r + I)⊕ (s + I) = (r + s) + I

and

(r + I)� (s + I) = (rs) + I.

The facts that these operations make sense and that they turn R/I

into a ring require proof. The proof is tedious but not difficult, so

we’ll skip most of it. However, you should do the following exercise:

Exercise A.15. Show that ⊕ and � are well-defined. That is, if

a + I = b + I and c + I = d + I, show that (a + c) + I = (b + d) + I

and ac + I = bd + I.

Exercise A.15 shows that the operations ⊕ and � make sense.

The following exercise shows that the ring R/I inherits its ideal struc-

ture from the ring R.

Exercise A.16. Let R be a ring and I an ideal of R. Show that the

ideals of R/I are in one-to-one correspondence with the ideals of R

which contain I. In particular, show that every ideal of R/I is of the

form J/I for some ideal J of R which contains I.

One example of a factor ring we’ll be looking at is

Rn := k[x]/ 〈xn − 1〉

where k is a field.
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Exercise A.17. Prove that elements of Rn are in one-to-one corre-

spondence with polynomials over k of degree at most n − 1. Hint:

Use the Division Algorithm.

Because of Exercise A.17, we can think of the elements of Rn as

actually being polynomials over k, as long as we always replace xn

with 1 when doing computations.

Exercise A.18. Take k = Z/5Z and compute the following in R4

(using the correspondence of Exercise A.17):

a) (1 + 3x + 5x3) + (3 + 4x2 + 2x3)

b) (1 + 3x + 5x3)(3 + 4x2 + 2x3)

Exercise A.19. Let k be any field, n a positive integer, and let

a0, . . . , an−1 ∈ k. Compute x(a0 + a1x + · · ·+ an−1x
n−1) in Rn.

A.3. Vector Spaces

Definition A.20. Let k be a field. A vector space V over k is an

abelian group which admits a scalar multiplication by elements of

k. If we let + denote the group operation and · (or concatenation)

denote the scalar multiplication, then the following properties must

be satisfied for any v, w ∈ V and any α, β ∈ k:

• α(v + w) = αv + αw

• (αβ)v = α(βv)

• (α + β)v = αv + βv

• 1k · v = v, where 1k is the multiplicative identity of k

Elements of V are called vectors. Let V be a vector space over

k and let S be a subset of V . We say S is linearly independent if

whenever α1, . . . , αn ∈ k and v1, . . . , vn ∈ S satisfy α1v1 + . . . αnvn =

0, it must be true that α1 = · · · = αn = 0. We say S spans V if

for any w ∈ V there exist α1, . . . , αn ∈ k and v1, . . . , vn ∈ S such

that α1v1 + . . . αnvn = w. We say S is a basis for V if S is linearly

independent and spans V . In this case, the number of elements of

S is called the dimension of V . In general, there are several linearly

independent subsets S which span the vector space V , but they all
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have the same number of elements. In other words, the dimension of

V is independent of the choice of basis.

A.4. Homomorphisms and Isomorphisms

Definition A.21. Let A and B be groups, rings, or vector spaces. A

homomorphism from A to B is a function φ : A → B which preserves

the operations in A and B. In particular,

• If A and B are groups, then for all x, y ∈ A, we have φ(xy) =

φ(x)φ(y).

• If A and B are rings, for all x, y ∈ A, we have φ(xy) = φ(x)φ(y)

and φ(x + y) = φ(x) + φ(y).

• If A and B are vector spaces over the field k, then for all x, y ∈
A and for all α ∈ k, we have φ(x+y) = φ(x)+φ(y) and φ(αx) =

αφ(x). (In this case, φ is often called a linear transformation

rather than a homomorphism.)

A homomorphism is called an isomorphism if it is one-to-one and

onto. If there is an isomorphism from A to B, we write A ∼= B and

say that A and B are isomorphic. If φ : A → A is an isomorphism,

we call φ an automorphism of A.

Notice that in each equation in the above definition, the opera-

tions on the left-hand-side of the equations are occurring in A while

the operations on the right are occurring in B.

Definition A.22. Let A and B be groups, rings, or vector spaces,

and let φ : A → B be a homomorphism. The kernel of φ is defined to

be all the elements of A which get sent to the appropriate identity of

B. In particular,

• If A and B are groups, then ker φ := {a ∈ A |φ(a) = eB}.
• If A and B are rings, then ker φ := {a ∈ A |φ(a) = 0B}.
• If A and B are vector spaces, then kerφ := {a ∈ A |φ(a) = 0B}.

Exercise A.23. Let A and B be groups, rings, or vector spaces, and

let φ : A → B be a homomorphism.



A.4. Homomorphisms and Isomorphisms 53

a) Show that ker φ is a normal subgroup (if A and B are groups),

ideal (if A and B are rings), or vector subspace (if A and B are

vector spaces) of A.

b) Show that φ is one-to-one if and only if ker φ = {eA} (if A and

B are groups), {0A} (if A and B are rings), or {0A} (if A and

B are vector spaces).

We will need the following theorem:

Theorem A.24. (First Isomorphism Theorem) Let A and B be

groups, rings, or vector spaces and let φ : A → B be a homomor-

phism. Then

A/ ker φ ∼= φ(A).





Appendix B

Finite Fields

In Exercise A.8, you showed that Z/pZ is a field for each prime p.

Therefore, since there are infinitely many primes, there are infinitely

many finite fields. When we think of Z/pZ as a field, we will write

Fp rather than Z/pZ. Fields of the form Fp are called prime fields

of characteristic p (see Definition B.1 below). In practice, the most

common alphabet for an error-correcting code is F2, the field with

2 elements. Codes over this alphabet are commonly called binary.

However, finite fields which are not prime fields are important in

coding theory as well. For example, one often uses extension fields of

F2 (fields which contain F2 as a subfield) as a tool in the construction

of binary codes. Further, for many theoretical results, finite fields of

characteristic other than 2 are needed. The purpose of this appendix

is to develop some of the theory of finite fields.

B.1. Background and Terminology

In this section, we set up some of the needed background and termi-

nology in order to study finite fields. Each definition is followed by

an exercise or two.

Definition B.1. Let k be a field. The characteristic of k is the least

positive integer n such that nx = 0 for all x ∈ k. If no such n exists,

we say that k has characteristic 0.
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For example, Q, R, and C all have characteristic 0, while Fp =

Z/pZ has characteristic p.

Exercise B.2. Explain why every finite field has nonzero character-

istic.

Exercise B.3. Let k be a field of characteristic p 6= 0. Show that p

is prime and that k contains Fp as a subfield.

A proper ideal I of a ring R (i.e., an ideal I of R with I 6= R)

is called a maximal ideal if for every ideal J with I ⊆ J ⊆ R, either

I = J or J = R. (In other words I is maximal if it’s proper and not

contained in any other proper ideal.)

Exercise B.4. Show that I is a maximal ideal of R if and only if

R/I is a field. (Hint: Exercise A.16)

Let k be a field and let f(x) ∈ k[x] be a polynomial. We say f(x)

is irreducible if f(x) 6∈ k and if whenever f(x) = g(x)h(x) for some

g(x), h(x) ∈ k[x], either g(x) ∈ k or h(x) ∈ k. (In other words, f(x)

is irreducible in k[x] if it’s not constant and if it can’t be written as

the product of two non-constant polynomials in k[x].)

Exercise B.5. Let k be a field and f(x) ∈ k[x]. Show that the ideal

〈f(x)〉 ⊂ k[x] is maximal if and only if f(x) is irreducible.

B.2. Classification of Finite Fields

Let k be a field and let f(x) ∈ k[x] be an irreducible polynomial of de-

gree d. As in Exercise A.17, we may think of elements of k[x]/ 〈f(x)〉
as polynomials of degree at most d − 1. Now, however, these poly-

nomials will form a field by Exercises B.4 and B.5 above. To avoid

confusion, we’ll write α for the element of the field k[x]/ 〈f(x)〉 which

corresponds to x.

Exercise B.6. Let g(x) = x3 + x + 1 ∈ F2[x].

a) Show that g(x) is irreducible in F2[x]. Conclude that F :=

F2[x]/ 〈g(x)〉 is a field.

b) How many elements does F have? List them. Make an addition

table and a multiplication table.
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Exercise B.7. Let h(x) = x3 + x2 + 1 ∈ F2[x].

a) Show that h(x) is irreducible in F2[x]. Conclude that F′ :=

F2[x]/ 〈h(x)〉 is a field.

b) How many elements does F′ have? List them. Make an addition

table and a multiplication table.

c) By matching up elements of the addition and multiplication

table, show that F′ is isomorphic to the field F of Exercise B.6

above.

In general, there is the following theorem about finite fields:

Theorem B.8. Let m be a positive integer. Then there is a field with

exactly m elements if and only if m = pn for some prime p and some

positive integer n. Further, up to isomorphism, there is only one field

with exactly pn elements, and it is of the form Fp[x]/ 〈f(x)〉 for some

irreducible polynomial f(x) ∈ Fp[x] of degree n. In particular, if f(x)

and g(x) are both irreducible polynomials in Fp[x] of degree n, then

Fp[x]/ 〈f(x)〉 and Fp[x]/ 〈g(x)〉 are isomorphic fields.

We also have the following theorem, which is useful in proving

Theorem B.8 and is important in its own right as well.

Theorem B.9. Let F be a finite field with pn elements. Then F× :=

F \ {0} is a cyclic group of order pn − 1.

An element α ∈ F is called primitive if F× = 〈α〉. Theorem B.9

shows that every finite field has at least one primitive element.

Before we can prove Theorem B.9, we need a few facts which are

the content of the next exercise.

Exercise B.10. Let k be a field and let g(x) ∈ k[x].

a) Suppose g(r) = 0 for some r ∈ k. Show that g(x) = (x−r)f(x)

for some f(x) ∈ k[x].

b) Show that g(x) has at most deg(g) roots.

Proof of Theorem B.9. First notice that since F is a field, every

nonzero element of F is a unit and so F× is indeed an abelian group

of order pn − 1. Thus, we only need to show that it is cyclic.
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By the Fundamental Theorem of Finite Abelian Groups (Theo-

rem A.2), we can write F× ∼= Cr1
⊕ · · · ⊕ Crt

, where Cr is a cyclic

group of order r, ri+1 divides ri for each i, and r1 . . . rt = pn− 1. For

any β ∈ F×, we have βr1 = 1, so the polynomial xr1 − 1 has at least

pn − 1 zeros in F. By Exercise B.10, this shows that pn − 1 ≤ r1.

But F× has a subgroup Cr1
of order r1, so pn − 1 = |F×| ≥ r1. Thus

pn − 1 = r1, so F× ∼= Cr1
is cyclic.

The usual proof of Theorem B.8 involves Galois Theory, or at

least the theory of splitting fields. (One shows that a finite field F with

pn elements is the splitting field of the polynomial xpn −x.) However,

a proof that doesn’t require this background is outlined in the optional

exercises at the end of this appendix. The basic idea is as follows:

First, use a counting argument to show that for every positive integer

n there is at least one irreducible polynomial of degree n in Fp[x]. This

shows that fields with pn elements do exist. (This part is elementary

but long and hence not included in the exercises, but can be found in

[CLO2].) Next, if F is any finite field, we see by Exercise B.3 above

that F contains some prime field Fp as a subfield. From there, it’s

not hard to see that F is a vector space over Fp, which shows that

F has pn elements for some positive integer n. That gives the first

statement of the theorem. The rest follows from Theorem B.9.

Because of Theorem B.8, if p is a prime and n is a positive integer,

then there is a unique (up to isomorphism) field with pn elements.

Thus we may unambiguously denote this field by Fpn . We know that

Fp ⊆ Fpn from Exercise B.3. It is also not difficult to show that

Fpm ⊂ Fpn if and only if m divides n. So for example, F4 ⊂ F16,

but F8 6⊂ F16. In particular, if q is any prime power and n ≥ 1, then

Fq ⊂ Fqn .

We will have occasion to use the trace map and the Frobenius

automorphism, both of which we define below.

Definition B.11. Let q be any prime power and let n ≥ 1. Then

the Frobenius automorphism is the map σq,n : Fqn → Fqn defined by

σq,n(α) = αq for any α ∈ Fqn . If q = pr where p is prime and r ≥ 2,

the map σq,n is often called the relative Frobenius, whereas σp,n is

often called the absolute Frobenius.
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Exercise B.12. Show that σq,n is one-to-one and onto.

Exercise B.13. Show that σq,n is a homomorphism. (Thus, σq,n is

an automorphism of Fqn .)

Exercise B.14. Show that σq,n(α) = α if and only if α ∈ Fq.

We will write σj
q,n for the map obtained by composing σq,n with

itself j times. For example, σ2
q,n(α) = σq,n(σq,n(α)).

Exercise B.15. Show that for any α ∈ Fqn , we have σn
q,n(α) = α.

Definition B.16. Let q be any prime power and let n ≥ q. The

trace of an element α ∈ Fqn is defined to be trq(α) = α + σq,n(α) +

· · ·+ σn−1
q,n (α). If q = pr with r ≥ 2, the map trq is called the relative

trace while trp is called the absolute trace.

Exercise B.17. Show that σq,n(trq(α)) = trq(α). Conclude that for

any α ∈ Fqn , trq(α) ∈ Fq.

B.3. Optional Exercises

In this section, we outline a proof of Theorem B.8.

Exercise B.18. Let F be a finite field of characteristic p. By Exer-

cise B.3 above, we know that Fp ⊂ F. Show that F is a vector space

over Fp. Conclude that since F has only finitely many elements, F

must have finite dimension n over Fp, so that the cardinality of F is

pn.

Exercise B.19. Let F be a finite field. We know from Exercise B.18

that the number of elements in F is some prime power pn. Let α be

a primitive element of F. Define a ring homomorphism φ : Fp[x] → F

by φ(x) = α.

a) Explain why φ is onto.

b) Show that there is some irreducible polynomial g(x) ∈ Fp[x]

such that kerφ = 〈g(x)〉.
c) Conclude that F ∼= Fp[x]/ 〈g(x)〉.

Exercise B.20. Let F, F′ be two fields with pn elements. We wish

to show that F ∼= F′. (We did this in the case pn = 8 in Exercises B.6

and B.7 above.)



60 B. Finite Fields

a) Let α ∈ F be primitive and write F ∼= Fp[x]/ 〈g(x)〉 as in Exer-

cise B.19 above. Show that g(x) divides (xpn − x) in Fp[x].

b) Show that xpn − x factors completely in F′[x]. In other words,

show that

xpn − x =
∏

β∈F′

(x− β).

c) Deduce that there is some γ ∈ F′ satisfying g(γ) = 0.

d) Deduce that F′ ∼= Fp[x]/ 〈g(x)〉, hence that F ∼= F′.



Appendix C

Projects

We have discussed only the very basics of classical coding theory –

just enough to motivate algebraic geometry codes and see why they

are important. Below are six important topics in coding theory which

we omitted.

C.1. Dual Codes and Parity Check Matrices

Let C be a linear code. As we saw, C has a generator matrix. There

is also such a thing as a parity check matrix for C, and this matrix

turns out to be a generator matrix for the dual code C⊥. Find out

the definitions of the parity check matrix and the dual codes. Also,

there’s a relationship described by the MacWilliams Identities (named

after Florence Jesse MacWilliams, who discovered them) between the

weights of codewords of C and the weights of codewords of C⊥. Find

out what you can on this as well. Note: The people doing Projects C.3

and C.6 below may want to consult with you.

C.2. BCH Codes

An important class of cyclic codes is the BCH codes. Find out what

you can about these codes, including their construction and their

parameters. It turns out that the Reed-Solomon codes (and maybe

61
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the Generalized Reed-Solomon codes, too) can be thought of as BCH

codes. How?

C.3. Hamming Codes

The Hamming codes are another important family of codes. They are

both cyclic (which we discussed in class) and perfect (you’ll need to

find out what this means). Decoding (figuring out which codeword

was sent if errors occur in transmission) with Hamming codes is very

easy because of the especially simple form of the parity check matrix

(Project C.1) of these codes. Be sure to report on the parameters of

these codes. Note: The people doing Project C.4 below may want to

consult with you.

C.4. Golay Codes

The Golay codes are famous for many reasons. Find out what you

can about this family of codes. The original paper in which they were

defined is incredibly short! Find it. Those of you who have had finite

group theory will be interested to know that the automorphism group

of the binary Golay code of length 24, dimension 12, and minimum

distance 8 is M24, a finite simple group (called a Mathieu group) of

order 244823040. Like the Hamming codes (Project C.3), the Golay

codes are perfect.

C.5. MDS Codes

Recall that MDS codes are codes with parameters which meet the

Singleton bound. The Reed-Solomon codes are MDS codes. Are there

other examples? The Main Conjecture on MDS Codes was mentioned

briefly in Chapter 2.1. What is it? What sort of progress has been

made towards proving it? What other ideas are involved?

C.6. Nonlinear Codes

We’ve focused almost entirely on linear codes, but there are several

families of nonlinear codes out there with very good parameters. Some

examples are the Kerdock codes and the Preparata codes. Learn
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about these families, and in particular about the Nordstrom Robin-

son code, which is a member of both families. There’s an important

relationship between the Kerdock codes and the Preparata codes in-

volving the MacWilliams Identities (see Project C.1) – what is it? A

1994 paper by Hammons and others showed that several well-known

families of nonlinear binary codes are actually linear if viewed in a

certain way. Find out what you can about this.
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